【題目】如圖,經(jīng)過(guò)點(diǎn)作兩條互相垂直的直線,直線軸正半軸于點(diǎn),直線軸正半軸于點(diǎn)

1)如果,求點(diǎn)的坐標(biāo).

2)試問(wèn)是否總存在經(jīng)過(guò) , 四點(diǎn)的圓?如果存在,求出半徑最小的圓的方程;如果不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2

【解析】試題分析:(1)先求的方程,進(jìn)而可求的方程,即可得到點(diǎn)的坐標(biāo);(2)因?yàn)?/span>, ,所以總存在經(jīng)過(guò) , , 四點(diǎn)的圓,且該圓以為直徑,分類(lèi)討論,確定、的坐標(biāo),表示出,即可求得結(jié)論.

試題解析:1, 相互垂直,∴, 經(jīng)過(guò),,,當(dāng)時(shí), ,

2 ,∴存在經(jīng)過(guò)、、四點(diǎn)的圓,該圓以為直徑.①若軸, 軸, ,②若兩條直線斜率均存在,設(shè)斜率為, 方程為, 方程為, ,令,解出,,, ,∴半徑最小值為,此時(shí)圓的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明計(jì)劃在811日至820日期間游覽某主題公園,根據(jù)旅游局統(tǒng)計(jì)數(shù)據(jù),該主題公園在此期間“游覽舒適度”(即在園人數(shù)與景區(qū)主管部門(mén)核定的最大瞬時(shí)容量之比, 以下為舒適, 為一般, 以上為擁擠),情況如圖所示,小明隨機(jī)選擇8月11日至8月19日中的某一天到達(dá)該主題公園,并游覽.

(1)求小明連續(xù)兩天都遇上擁擠的概率;

(2)設(shè)是小明游覽期間遇上舒適的天數(shù),求的分布列和數(shù)學(xué)期望;

(3)由圖判斷從哪天開(kāi)始連續(xù)三天游覽舒適度的方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知α,β為銳角, ,求α+2β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于任意的實(shí)數(shù)m∈[0,1],mx2﹣2x﹣m≥2,則x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等比數(shù)列中,已知,且成等差數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,A、B、C的對(duì)邊分別為a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

K日 日期期

1日

2日

3日

4日

5日

溫差x(℃)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

(1)求這5天發(fā)芽數(shù)的中位數(shù);

(2)求這5天的平均發(fā)芽率;

(3)從3月1日至3月5日中任選2天,記前面一天發(fā)芽的種子數(shù)為m,后面一天發(fā)芽的種子數(shù)為n,用(mn)的形式列出所有基本事件,并求滿(mǎn)足“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若曲線在點(diǎn)處的切線斜率為1,求函數(shù)的單調(diào)區(qū)間;

(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù).若函數(shù)的最小值是,求的值;

(3)若函數(shù),的定義域都是,對(duì)于函數(shù)的圖象上的任意一點(diǎn),在函數(shù)的圖象上都存在一點(diǎn),使得,其中是自然對(duì)數(shù)的底數(shù),為坐標(biāo)原點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案