精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=2sin2(
π
2
-x)+2
3
sin(π-x)cosx,
(1)求函數f(x)在[-
π
6
,
π
3
]
上的值域;
(2)在△ABC中,若f(C)=2,2sinB=cos(A-C)-cos(A+C),求tanA.
分析:(1)利用三角函數的降冪公式與倍角公式,輔助角公式將函數f(x)=2sin2(
π
2
-x)+2
3
sin(π-x)cosx轉化為:
y=2sin(2x+
π
6
),由x∈[-
π
6
,
π
3
]
⇒2x+
π
6
∈[-
π
6
,
6
]
,由正弦函數的圖象與性質可求得函數f(x)在[-
π
6
π
3
]
上的值域;
(2)由f(C)=2sin(2C+
π
6
)+1=2
,0<C<π⇒C=
π
3
;2sinB=cos(A-C)-cos(A+C)⇒sinB=sinAsinC
?sin(A+C)=sinAsinC,展開整理即可求得tanA.
解答:解:化簡函數為:f(x)=2cos2x+2
3
sinxcosx=
3
sin2x+cos2x+1=2sin(2x+
π
6
)+1
,
(1)當x∈[-
π
6
,
π
3
]
時,2x+
π
6
∈[-
π
6
,
6
]
,
sin(2x+
π
6
)∈[-
1
2
, 1]
,2sin(2x)+1∈[0,3],即f(x)∈[0,3];
∴函數f(x)的值域為[0,3].
(2)由條件知f(C)=2sin(2C+
π
6
)+1=2
,
即:sin(2C+
π
6
)=
1
2
,0<C<π,所以C=
π
3
,
又∵2sinB=cos(A-C)-cos(A+C),
∴2sinB=cosAcosC+sinAsinC-(cosAcosC-sinAsinC),
∴sinB=sinAsinC,由C=
π
3
,A+B+C=π可得:
sin(A+C)=
3
2
sinA,即sinAcosC+cosAsinC=
3
2
sinA,
所以:
1
2
tanA+
3
2
=
3
2
tanA,
解得:tanA=
3
+3
2
點評:本題考查復合三角函數的單調性,(1)中難點在于由x∈[-
π
6
,
π
3
]
⇒2x+
π
6
∈[-
π
6
,
6
]
,再利用正弦函數的圖象與性質予以解決,(2)著重考查三角函數的恒等變換及化簡求值,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
2-xx+1

(1)求出函數f(x)的對稱中心;
(2)證明:函數f(x)在(-1,+∞)上為減函數;
(3)是否存在負數x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數f(x)的值域和最小正周期;
(2)當x∈[0,2π]時,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2-
ax+1
(a∈R)
的圖象過點(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個零點;
(3)若f(x)+mx>1對一切的正實數x均成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當x=
3
3
時,函數f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習冊答案