【題目】EC垂直Rt△ABC的兩條直角邊,D是斜邊AB的中點,AC=6,BC=8,EC=12,則DE的長為 .
【答案】13
【解析】如圖,EC⊥AC,EC⊥CB,CB∩CA=C
∴EC⊥面ABC
而CD面ABC
∴EC⊥CD
∵AC=6,BC=8,EC=12,△ABC是直角三角形,D是斜邊AB的中點,
∴CD=5,ED= =13
所以答案是:13.
【考點精析】通過靈活運(yùn)用直線與平面垂直的判定和直線與平面垂直的性質(zhì),掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想;垂直于同一個平面的兩條直線平行即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)+2= ,當(dāng)x∈(0,1]時,f(x)=x2 , 若在區(qū)間(﹣1,1]內(nèi),g(x)=f(x)﹣t(x+2)有兩個不同的零點,則實數(shù)t的取值范圍是( )
A.(0, ]
B.(0, ]
C.[﹣ , ]
D.[﹣ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為AB,BC的中點,點F在側(cè)棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求證:
(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講
以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,
在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù), ),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)當(dāng)時,曲線和相交于、兩點,求以線段為直徑的圓的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在空間四邊形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,則△ABC的形狀是( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,AP=1,AD=2,E為線段PD上一點,記 =λ. 當(dāng)λ= 時,二面角D﹣AE﹣C的平面角的余弦值為 .
(1)求AB的長;
(2)當(dāng) 時,求異面直線BP與直線CE所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B分別在射線CM、CN(不含端點C)上運(yùn)動,∠MCN= π,在△ABC中,角A、B、C所對的邊分別是a、b、c.
(Ⅰ)若a、b、c依次成等差數(shù)列,且公差為2.求c的值;
(Ⅱ)若c= ,∠ABC=θ,試用θ表示△ABC的周長,并求周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國上是世界嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過的部分按平價收費(fèi),超過的部分按議價收費(fèi),為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 的值;
(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值,并說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com