【題目】如圖1,在矩形ABCD中,AB=4,AD=2,E,F(xiàn),O分別為DC,AE,BC的中點.以AE為折痕把△ADE折起,使點D到達點P的位置,且平面PAE⊥平面ABCE(如圖2).

(Ⅰ)求證:BC⊥平面POF;

(Ⅱ)求直線PA與平面PBC所成角的正弦值;

(Ⅲ)在線段PE上是否存在點M,使得AM∥平面PBC?若存在,求的值;若不存在,說明理由.

【答案】(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析

【解析】

(I)由面面垂直的性質(zhì)定理得PF⊥平面ABCE,可得PF⊥BC,結(jié)合BC⊥OF,可得BC⊥平面POF;

(II)建立空間直角坐標(biāo)系,計算平面PBC的法向量,通過計算法向量與的夾角得出線面角的正弦值;

(III)設(shè),令,計算λ的值得出結(jié)論.

(Ⅰ)在矩形ABCD中,AB=4,AD=2,E是CD中點,所以DA=DE,即PA=PE,

又F為AE的中點,所以PF⊥AE,又平面PAE⊥平面ABCE,平面PAE∩平面ABCE=AE,

PF平面PAE,所以PF⊥平面ABCE,BC平面ABCE,所以PF⊥BC,

由F,O分別為AE,BC的中點,易知FO∥AB,所以O(shè)F⊥BC,所以BC⊥平面POF,

(Ⅱ)過點O做平面ABCE的垂線OZ,以O(shè)為原點,分別以O(shè)F,OB,OZ為x,y,z軸建立坐標(biāo)系O﹣xyz,

,設(shè)平面PBC的法向量為

,令z=3得,

所以直線PA與平面PBC所成角的正弦值.

(Ⅲ)在線段PE上不存在點M,使得AM∥平面PBC.證明如下:

點M在線段PE上,設(shè), ,

若AM∥平面PBC,則,

,解得λ=2[0,1]

所以在線段PE上不存在點M,使得AM∥平面PBC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右頂點為,左焦點為,離心率,過點的直線與橢圓交于另一個點,且點軸上的射影恰好為點,若

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過圓上任意一點作圓的切線與橢圓交于,兩點,以為直徑的圓是否過定點,如過定點,求出該定點;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求滿足下列條件的橢圓或雙曲線的標(biāo)準(zhǔn)方程:

(1)橢圓的焦點在軸上,焦距為4,且經(jīng)過點;

(2)雙曲線的焦點在軸上,右焦點為,過作重直于軸的直線交雙曲線于兩點,且,離心率為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會開展了一次關(guān)于垃圾分類問卷調(diào)查的實踐活動,組織部分學(xué)生干部在幾個大型小區(qū)隨機抽取了共50名居民進行問卷調(diào)查.調(diào)查結(jié)束后,學(xué)生會對問卷結(jié)果進行了統(tǒng)計,并將其中一個問題是否知道垃圾分類方法(知道或不知道)的調(diào)查結(jié)果統(tǒng)計如下表:

年齡(歲)

頻數(shù)

14

12

8

6

知道的人數(shù)

3

4

8

7

3

2

1)求上表中的的值,并補全右圖所示的的頻率直方圖;

2)在被調(diào)查的居民中,若從年齡在的居民中各隨機選取1人參加垃圾分類知識講座,求選中的兩人中僅有一人不知道垃圾分類方法的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD平面CDEF,BAD=CDA=90,M是線段AE上的動點.

(1)試確定點M的位置,使AC平面DMF,并說明理由;

(2)(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】蘋果是人們?nèi)粘I钪谐R姷臓I養(yǎng)型水果.某地水果批發(fā)市場銷售來自5個不同產(chǎn)地的富士蘋果,各產(chǎn)地的包裝規(guī)格相同,它們的批發(fā)價格(元/箱)和市場份額如下:

產(chǎn)地

批發(fā)價格

市場份額

市場份額亦稱“市場占有率”.指某一產(chǎn)品的銷售量在市場同類產(chǎn)品中所占比重.

(1)從該地批發(fā)市場銷售的富士蘋果中隨機抽取一箱,求該箱蘋果價格低于元的概率;

(2)按市場份額進行分層抽樣,隨機抽取箱富士蘋果進行檢驗,

①從產(chǎn)地共抽取箱,求的值;

②從這箱蘋果中隨機抽取兩箱進行等級檢驗,求兩箱產(chǎn)地不同的概率;

(3)由于受種植規(guī)模和蘋果品質(zhì)的影響,預(yù)計明年產(chǎn)地的市場份額將增加,產(chǎn)地的市場份額將減少,其它產(chǎn)地的市場份額不變,蘋果銷售價格也不變(不考慮其它因素).設(shè)今年蘋果的平均批發(fā)價為每箱元,明年蘋果的平均批發(fā)價為每箱元,比較的大小.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019420日,重慶市實施高考改革方案,2018年秋季入學(xué)的高中一年級的學(xué)生將實行模式.“3”為全國統(tǒng)考科目語文、數(shù)學(xué)、外語所有學(xué)生必考;“1”為物理、歷史科目中選擇一科俗稱“21”;“2”為再選學(xué)科,考生可在化學(xué)、生物、思想政治、地理4個科目中選擇兩科俗稱“42”,選擇學(xué)科完全相同即為相同組合”.某校高一年級有三名同學(xué)甲,乙,丙根據(jù)自己喜歡的大學(xué)和專業(yè)情況均選擇了物理,為了了解“42”選科情況老師找這三名同學(xué)來談話情況如下:

甲說:我選了化學(xué),但沒有選思想政治;

乙說:我與甲有一科相同,但沒有選化學(xué)和地理;

丙說:我與甲有相同的選科,與乙也有相同選科,但我們?nèi)齻選的組合都不相同.則下列結(jié)論正確的是(

A.甲選了化學(xué)和地理B.丙可能選化學(xué)和思想政治

C.甲一定選地理D.丙一定選了生物和地理

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)設(shè)的極值點,求實數(shù)的值,并求的單調(diào)區(qū)間:

(2)時,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列五個命題:

①凈三種個體按的比例分層抽樣調(diào)查,如果抽取的個體為9個,則樣本容易為30;②一組數(shù)據(jù)1、2、3、4、5的平均數(shù)、眾數(shù)、中位數(shù)相同;③甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲;④已知具有線性相關(guān)關(guān)系的兩個變量滿足的回歸直線方程為.則每增加1個單位,平均減少2個單位;⑤統(tǒng)計的10個樣本數(shù)據(jù)為125,120,122,105,130,114,116,95,120,134,則樣本數(shù)據(jù)落在內(nèi)的頻率為0.4其中真命題為( )

A. ①②④B. ②④⑤C. ②③④D. ③④⑤

查看答案和解析>>

同步練習(xí)冊答案