點P是橢圓上一點, F1、F2是其焦點, 若∠F1P F2=90°, △F1P F2面積為      .

 

【答案】

【解析】

試題分析:△F1P F2是橢圓的“焦點三角形”。在橢圓中,焦點三角的面積公式是:若橢圓的方程是  (θ為焦點三角形的頂角)

所以S=9×tan45°=9,即△F1P F2面積為面積為9.

考點:本題主要考查橢圓的定義、幾何性質(zhì)。

點評:典型題,涉及橢圓的“焦點三角形”問題,一般要利用橢圓的定義。本題利用已有“小結(jié)論”,使問題的解決更為方便。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
4
+
y2
3
=1
中,點P是橢圓上一點,F(xiàn)1,F(xiàn)2是橢圓的焦點,且∠PF1F2=120°,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
9
+
y2
5
=1
內(nèi)有一點A(1,1),F(xiàn)1、F2分別是橢圓的左、右焦點,點P是橢圓上一點.
(1)求|PA|+|PF1|的最大值、最小值及對應(yīng)的點P坐標;
(2)求|PA|+
3
2
|PF2|
的最小值及對應(yīng)的點P的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的一個頂點到其左、右兩個焦點F1,F(xiàn)2的距離分別為5和1;點P是橢圓上一點,且在x軸上方,直線PF2的斜率為-
15

(Ⅰ)求橢圓E的方程;
(Ⅱ)求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>0,b>0),F(xiàn)1,F(xiàn)2是橢圓C的兩個焦點,若點P 是橢圓上一點,滿足那么|PF2|=|F1F2|,且F2到直線PF1的距離等于橢圓的短軸長,則橢圓C的離心率為
5
7
5
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•廣州模擬)如圖,已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
4
5
,左、右焦點分別為F1和F2,橢圓C與x軸的兩交點分別為A、B,點P是橢圓上一點(不與點A、B重合),且∠APB=2α,∠F1PF2=2β.
(Ⅰ)若β=45°,三角形F1PF2的面積為36,求橢圓C的方程;
(Ⅱ)當點P在橢圓C上運動,試證明tanβ•tan2α為定值.

查看答案和解析>>

同步練習(xí)冊答案