【題目】已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞) (Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點(diǎn),求實(shí)數(shù)m的值.

【答案】解:(Ⅰ)不等式轉(zhuǎn)化為 , 解得x>2,∴x0=2;
(Ⅱ)由題意,等價(jià)于|x﹣m|+|x+ |=2(m>0)有解,
∵|x﹣m|+|x+ |≥m+ ,當(dāng)且僅當(dāng)(x﹣m)(x+ )≤0時(shí)取等號(hào),
∵|x﹣m|+|x+ |=2(m>0)有解,
∴m+ ≤2,
∵m+ ≥2,
∴m+ =2.
【解析】(Ⅰ)不等式轉(zhuǎn)化為 ,解得x>2,即可求x0的值;(Ⅱ)由題意,等價(jià)于|x﹣m|+|x+ |=2(m>0)有解,結(jié)合基本不等式,即可求實(shí)數(shù)m的值.
【考點(diǎn)精析】掌握絕對(duì)值不等式的解法是解答本題的根本,需要知道含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·陜西)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量平行.
(1)求A。
(2)若a=, b=2求△ABC的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已成橢圓 的左右頂點(diǎn)分別為 ,上下頂點(diǎn)分別為 ,左右焦點(diǎn)分別為 ,其中長(zhǎng)軸長(zhǎng)為4,且圓 為菱形 的內(nèi)切圓.
(1)求橢圓 的方程;
(2)點(diǎn) 軸正半軸上一點(diǎn),過點(diǎn) 作橢圓 的切線 ,記右焦點(diǎn) 上的射影為 ,若 的面積不小于 ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在考試測(cè)評(píng)中,常用難度曲線圖來檢測(cè)題目的質(zhì)量,一般來說,全卷得分高的學(xué)生,在某道題目上的答對(duì)率也應(yīng)較高,如果是某次數(shù)學(xué)測(cè)試壓軸題的第1、2問得分難度曲線圖,第1、2問滿分均為6分,圖中橫坐標(biāo)為分?jǐn)?shù)段,縱坐標(biāo)為該分?jǐn)?shù)段的全體考生在第1、2問的平均難度,則下列說法正確的是(
A.此題沒有考生得12分
B.此題第1問比第2問更能區(qū)分學(xué)生數(shù)學(xué)成績(jī)的好與壞
C.分?jǐn)?shù)在[40,50)的考生此大題的平均得分大約為4.8分
D.全體考生第1問的得分標(biāo)準(zhǔn)差小于第2問的得分標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,△PAD為正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E為棱PB的中點(diǎn) (Ⅰ)求證:平面PAB⊥平面CDE;
(Ⅱ)若直線PC與平面PAD所成角為45°,求二面角A﹣DE﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 的最大值為2,它的最小正周期為2π. (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若g(x)=cosxf(x),求g(x)在區(qū)間 上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)集合A,B,滿足BA.若對(duì)任意的x∈A,存在ai , aj∈B(i≠j),使得x=λ1ai2aj(λ1 , λ2∈{﹣1,0,1}),則稱B為A的一個(gè)基集.若A={1,2,3,4,5,6,7,8,9,10},則其基集B元素個(gè)數(shù)的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的離心率為 ,M為C上除長(zhǎng)軸頂點(diǎn)外的一動(dòng)點(diǎn),以M為圓心, 為半徑作圓,過原點(diǎn)O作圓M的兩條切線,A、B為切點(diǎn),當(dāng)M為短軸頂點(diǎn)時(shí)∠AOB= . (Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的右焦點(diǎn)為F,過點(diǎn)F作MF的垂線交直線x= a于N點(diǎn),判斷直線MN與橢圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體是由一個(gè)直平行六面體被平面AEFG所截后得到的,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(1)求證:BD⊥平面ADG;
(2)求此多面體的全面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案