精英家教網 > 高中數學 > 題目詳情

如圖所示,已知空間四邊形ABCD的每條邊和對角線長都等于1,點E、F、G分別是AB、AD、CD的中點,計算:

(1)·
(2)·;
(3)EG的長;
(4)異面直線AG與CE所成角的余弦值.

(1)   (2)-   (3)   (4)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

已知向量,且垂直,則等于  

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐P­ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2,E是PB上任意一點.
(1)求證:AC⊥DE;
(2)已知二面角A­PB­D的余弦值為,若E為PB的中點,求EC與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M為AD的中點.

(1)證明:MF⊥BD;
(2)若二面角A-BF-D的平面角的余弦值為,求AB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在棱長為2的正方體中,分別是棱的中點,點分別在棱,上移動,且.
時,證明:直線平面
是否存在,使平面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐中,底面是直角梯形,,
平面平面,若,,,,且

(1)求證:平面; 
(2)設平面與平面所成二面角的大小為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,等腰梯形ABCD,AD//BC,P是平面ABCD外一點,P在平面ABCD的射影O恰在AD上,.

(1)證明:;
(2)求二面角A-BP-D的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

在空間直角坐標系中,設點是點關于坐標平面的對稱點,則線段
長度等于 ▲ 

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知l∥,且l的方向向量為(2, m, 1), 平面的法向量為(1,, 2), 則m=       .

查看答案和解析>>

同步練習冊答案