【題目】已知橢圓的右焦點為,上頂點為,直線的斜率為,且原點到直線的距離為.

(1)求橢圓的標準方程;

(2)若不經過點的直線與橢圓交于兩點,且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.

【答案】(1);(2)

【解析】

(1)由題可知,求得直線的方程,再由點到直線的距離公式,聯(lián)立求得的值,即可得到橢圓的標準方程;

(2)由直線與圓相切,求得,再把直線方程與圓的方程聯(lián)立,利用根與系數(shù)的關系和弦長公式,分別求得,即計算求得三角形的周長。

(1)由題可知,,,則,

直線的方程為,即,所以

解得,,

,所以橢圓的標準方程為.

(2)因為直線與圓相切,

所以,即.

,

聯(lián)立,得

所以 ,

,

所以 .

,所以.

因為 ,

同理.

所以,

所以的周長是,

的周長為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了研究教學方式對教學質量的影響,某高中數(shù)學老師分別用兩種不同的教學方式對入學數(shù)學平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學生的數(shù)學期末考試成績

(1)學校規(guī)定:成績不低于75分的為優(yōu)秀.請畫出下面的列聯(lián)表

甲班

乙班

合計

優(yōu)秀

不優(yōu)秀

合計

(2)判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.

下面臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,左頂點為,過橢圓的右焦點作互相垂直的兩條直線分別交直線兩點,交橢圓于另一點.

(Ⅰ)求橢圓的方程;

(Ⅱ)求證:直線恒過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務質量,收集并整理了2015年1月至2017年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結論錯誤的是()

A. 年接待游客量逐年增加

B. 各年的月接待游客量高峰期在8月

C. 2015年1月至12月月接待游客量的中位數(shù)為30萬人

D. 各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A={x|x2≥9},B={x|﹣1<x≤7},C={x||x﹣2|<4}.

(1)求A∩B及A∪C;

(2)若U=R,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”,三國時期吳國的數(shù)學家趙爽在《周髀算經》中注釋了其理論證明,其基本思想是圖形經過割補后面積不變.即通過如圖所示的“弦圖”,將勻股定理表述為:“勾股各自乘,并之,為弦實,開方除之,即弦”(其中分別為勾股弦);證明方法敘述為:“按弦圖,又可以勾股相乘為朱實二,倍之為朱實四,以勾股之差自相乘為中黃實,加差實,亦成弦實”,即,化簡得.現(xiàn)已知,,向外圍大正方形區(qū)域內隨機地投擲一枚飛鏢,飛鏢落在中間小正方形內的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一種電腦屏幕保護畫面,只有符號“”和“”隨機地反復出現(xiàn),每秒鐘變化一次,每次變化只出現(xiàn)“”和“”之一,其中出現(xiàn)“”的概率為,出現(xiàn)“”的概率為,若第次出現(xiàn)“”,則記;若第次出現(xiàn)“”,則記,記.

1)若,求的分布列及數(shù)學期望;

2)若,,求=1,23,4)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一條直線上依次有三點、.一只獵犬在點發(fā)現(xiàn)一大兩小三只兔子從點向兔穴(點)前行,立即向它們追去.當兔子發(fā)現(xiàn)獵犬追趕后,急忙向兔穴奔跑,大兔為了提高速度,可叼著一只小兔奔跑(速度不變,且叼起與放下小兔所耽誤的時間不計).已知,,獵犬、大兔、小兔奔跑的速度分別為、、,兔子前行的速度為.則三只兔子至多在離開點______時發(fā)現(xiàn)獵犬,才能恰在獵犬追上自己之前全部跑進兔穴.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,為等邊三角形,,,.

(Ⅰ)若點的中點,求證:平面;

(Ⅱ)求四棱錐的體積.

查看答案和解析>>

同步練習冊答案