【題目】已知函數(shù)

(1)若的極值,求的值,并求的單調(diào)區(qū)間。

(2)若時(shí),,求實(shí)數(shù)的取值范圍。

【答案】(1),的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.(2)

【解析】

1)計(jì)算的導(dǎo)函數(shù),結(jié)合極值,計(jì)算a,結(jié)合導(dǎo)函數(shù)與原函數(shù)單調(diào)關(guān)系,計(jì)算單調(diào)區(qū)間,即可。(2)法一:計(jì)算導(dǎo)函數(shù),構(gòu)造函數(shù),結(jié)合導(dǎo)函數(shù),得到的單調(diào)區(qū)間,計(jì)算范圍,即可。法二 :構(gòu)造函數(shù),結(jié)合導(dǎo)函數(shù),得到原函數(shù)單調(diào)性,計(jì)算,得到a的范圍,即可。

(1)的定義域是,

的極值得,得.

時(shí),由,得,

列表(列表的功能有兩個(gè):一是檢驗(yàn)的正確性;二是求單調(diào)區(qū)間)得

負(fù)

0

單調(diào)遞減

極小值

單調(diào)遞增

綜上,的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.

(2)法一:因,.

,

,且,當(dāng)

時(shí),,單調(diào)遞增,

時(shí),,則,

單調(diào)遞增,,符合。

當(dāng),即時(shí),則存在,使得時(shí),,

此時(shí),,單調(diào)遞減,時(shí),,不符。

綜上,實(shí)數(shù)的取值范圍是.

法二:時(shí),,等價(jià)于,

,

,

,單調(diào)遞減,

由洛必達(dá)法則得,

,綜上,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某年級(jí)組織學(xué)生參加了某項(xiàng)學(xué)術(shù)能力測(cè)試,為了解參加測(cè)試學(xué)生的成績(jī)情況,從中隨機(jī)抽取20名學(xué)生的測(cè)試成績(jī)作為樣本,規(guī)定成績(jī)大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀.統(tǒng)計(jì)結(jié)果如圖:

(1)求的值和樣本的平均數(shù);

(2)從該樣本成績(jī)優(yōu)秀的學(xué)生中任選兩名,求這兩名學(xué)生的成績(jī)至少有一個(gè)落在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出.具體操作是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過程逐次得到各個(gè)圖形,如圖.

現(xiàn)在上述圖(3)中隨機(jī)選取一個(gè)點(diǎn),則此點(diǎn)取自陰影部分的概率為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班50位學(xué)生周考數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:、、.

1)求圖中的矩形高的值,并估計(jì)這50人周考數(shù)學(xué)的平均成績(jī);

2)根據(jù)直方圖求出這50人成績(jī)的眾數(shù)和中位數(shù)(精確到0.1);

3)從成績(jī)不低于80分的學(xué)生中隨機(jī)選取2人,該2人中成績(jī)不低于90分的人數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,,的中點(diǎn),點(diǎn)在平面內(nèi)的射影在線段上.

(1)求證:

(2)若是正三角形,求三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)R.

(1)試討論函數(shù)的極值點(diǎn)的個(gè)數(shù);

(2)若N*,且恒成立,求的最大值.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩名老師和五名學(xué)生站一排拍照.

1)五名學(xué)生必須排在一起共有多少種排法?

2)兩名老師不能相鄰共有多少種排法?

3)兩名老師不能排在兩邊共有多少種排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程,曲線的參數(shù)方程;

(2)若分別為曲線,上的動(dòng)點(diǎn),求的最小值,并求取得最小值時(shí),點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是放置在桌面的某三棱柱的三視圖,其中網(wǎng)格小正方形邊長(zhǎng)為1.若三棱柱表面上的兩點(diǎn)在三視圖中的對(duì)應(yīng)點(diǎn)為、,現(xiàn)一只螞蟻要沿該三棱柱的表面(不包括下底面)從爬到,則所有路徑里最短路徑的長(zhǎng)度為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案