【題目】已知為等差數(shù)列,前n項(xiàng)和為,是首項(xiàng)為2的等比數(shù)列,且公比大于0,,,

1的通項(xiàng)公式;

2求數(shù)列的前n項(xiàng)和

【答案】1,;2

【思路分析】1根據(jù)等差數(shù)列和等比數(shù)列通項(xiàng)公式及前項(xiàng)和公式列方程求出等差數(shù)列的首項(xiàng)和公差及等比數(shù)列的公比,即可寫(xiě)出等差數(shù)列和等比數(shù)列的通項(xiàng)公式;2利用錯(cuò)位相減法即可求出數(shù)列前n項(xiàng)和.

【解析】1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為

由已知,得,而,所以

,解得所以(2分)

,可得

,可得 ,

聯(lián)立①②,解得,,由此可得(4分)

所以數(shù)列的通項(xiàng)公式為,數(shù)列的通項(xiàng)公式為(5分)

2)設(shè)數(shù)列的前項(xiàng)和為,

,有,

,(6分)

,

上述兩式相減,得

,(8分)

,

所以數(shù)列的前項(xiàng)和為(10分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中石化集團(tuán)獲得了某地深海油田塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料,進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)米布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口斷井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見(jiàn)下表:

井號(hào)

坐標(biāo)

鉆探深度

出油量

(1)號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計(jì)的預(yù)報(bào)值;

(2)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)號(hào)并計(jì)算出的的值(精確到)與(1)中的值差不超過(guò),則使用位置最接近的已有舊井,否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?

(參考公式和計(jì)算結(jié)果:

(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有口井中任意勘探口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn=n2+pn+q(p,q∈R),且a2 , a3 , a5成等比數(shù)列.
(1)求p,q的值;
(2)若數(shù)列{bn}滿足an+log2n=log2bn , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且an和Sn滿足:4Sn=(an+1)2(n=1,2,3…),
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)無(wú)窮數(shù)列的前項(xiàng)和分別為,,,對(duì)任意的,都有.

(1)求數(shù)列的通項(xiàng)公式;

(2)若為等差數(shù)列,對(duì)任意的,都有.證明:;

(3)若為等比數(shù)列,,求滿足值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得 =80, =20, yi=184, =720.
(1)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線性回歸方程y=bx+a;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.
附:線性回歸方程y=bx+a中,b= ,a= ﹣b ,其中 , 為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值;

(2)當(dāng)時(shí),過(guò)原點(diǎn)分別做曲線 的切線,,若兩切線的斜率互為倒數(shù),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)分類變量XY,值域分別為{x1,x2}{y1,y2},其樣本頻數(shù)分別是a10,b21,cd35.XY有關(guān)系的可信程度不小于97.5%,則c等于(  )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)a,bc,d滿足a+b+c+d=3,a2+2b2+4c2+4d2=5a的最大值為(

A.1 B.2 C.3 D..4

查看答案和解析>>

同步練習(xí)冊(cè)答案