【題目】已知圓關(guān)于直線對稱且過點,直線過定點.

1)證明:直線與圓相交;

2)記直線與圓的兩個交點為.

①若弦長,求直線方程;

②求面積的最大值及面積的最大時的直線方程.

【答案】1)見解析(2)①

【解析】

1)求出的垂直平分線方程,與聯(lián)立,可得圓的圓心坐標,進而可得圓的半徑,聯(lián)立,計算判別式,可得結(jié)果;

2)①設(shè)直線的方程為,求出弦心距,在利用半徑和弦長列方程可得;

②根據(jù)面積公式可得,進而可求出最值及此時的直線方程.

1)證明:∵、

的垂直平分線為聯(lián)立方程得圓心坐標

∴圓的方程為

又∵圓過點

進而得到圓的方程:,

設(shè)直線的方程為,則

聯(lián)立得:

∴直線與圓相交;

2)解:設(shè)直線的方程為

記圓心到直線的距離為.

①∵,解得

,解得,

此時直線的方程為

,

時,三角形面積的最大值為2,

此時解得,

此時直線的方程為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,右頂點為,且過點,圓是以線段為直徑的圓,經(jīng)過點且傾斜角為的直線與圓相切.

(1)求橢圓及圓的方程;

(2)是否存在直線,使得直線與圓相切,與橢圓交于兩點,且滿足?若存在,請求出直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=asin2x﹣2cos2x+1(a∈R)的圖象經(jīng)過點(﹣,1)

(1)求a;

(2)若在區(qū)間[0,m]上存在唯一實數(shù)x0,使得f(x0)=2,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,馬路南邊有一小池塘,池塘岸40米,池塘的最遠端的距離為400米,且池塘的邊界為拋物線型,現(xiàn)要在池塘的周邊建一個等腰梯形的環(huán)池塘小路,且均與小池塘岸線相切,記.

1)求小路的總長,用表示;

2)若在小路與小池塘之間(圖中陰影區(qū)域)鋪上草坪,求所需鋪草坪面積最小時,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示為一正方體的平面展開圖,在這個正方體中,有下列四個命題:

AFGC;

BDGC成異面直線且夾角為60

BDMN;

BG與平面ABCD所成的角為45.

其中正確的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是______.

①若直線與直線互相垂直,則

②若,兩點到直線的距離分別是,則滿足條件的直線共有3

③過兩點的所有直線方程可表示為

④經(jīng)過點且在軸和軸上截距都相等的直線方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】12分)已知等差數(shù)列{an}中,a1=1,a3=﹣3

)求數(shù)列{an}的通項公式;

)若數(shù)列{an}的前k項和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)AB兩種產(chǎn)品,生產(chǎn)每一噸產(chǎn)品所需的勞動力和煤、電耗如下表:

產(chǎn)

千瓦

A產(chǎn)

3

9

4

B產(chǎn)

10

4

5

已知生產(chǎn)每噸A產(chǎn)品的利潤是7萬元,生產(chǎn)每噸B產(chǎn)品的利潤是12萬元,現(xiàn)在條件有限,該企業(yè)僅有勞動力300個,煤360噸,并且供電局只能供電200千瓦,試問:該企業(yè)生產(chǎn)A、B兩種產(chǎn)品各多少噸,才能獲得最大利潤?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學著作《算法統(tǒng)綜》中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還”其大意為:“有一個人走378里路,第一天健步走,從第二天起因腳痛每天走的路程為前一天的一半,走了6天后到達目的地”,請問此人第5天走的路程為( )

A. 36里 B. 24里 C. 18里 D. 12里

查看答案和解析>>

同步練習冊答案