不等式
5x+1
x+1
<3的解集是
 
考點(diǎn):其他不等式的解法
專(zhuān)題:不等式的解法及應(yīng)用
分析:將不等式
5x+1
x+1
<3移項(xiàng),通分,轉(zhuǎn)化為
2x-2
x+1
<0,等價(jià)于(2x-2)(x+1)<0,利用一元二次不等式的求法,求解即可得到不等式
5x+1
x+1
<3的解集.
解答: 解:不等式
5x+1
x+1
<3可以轉(zhuǎn)化為
2x-2
x+1
<0,
2x-2
x+1
<0等價(jià)于(2x-2)(x+1)<0,
∴(x-1)(x+1)<0,
∴-1<x<1,
∴不等式
5x+1
x+1
<3的解集為{x|-1<x<1}.
故答案為:{x|-1<x<1}.
點(diǎn)評(píng):本題主要考查分式不等式的解法.對(duì)于分式不等式,一般是“移項(xiàng),通分”,將分式不等式轉(zhuǎn)化為各個(gè)因式的正負(fù)問(wèn)題.體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=a2x-
1
2
ax(a>0,且a≠1)
(1)求f(x)的值域;
(2)解不等式f(x)
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2cos10°
cos20°
-tan20°
=( 。
A、1
B、
3
-1
2
C、
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-x2+x,x<0
2ln(x+1),x≥0
,若函數(shù)y=f(x)-kx有三個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A、(2,+∞)
B、(0,1)
C、(0,2)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ax2+bx+c(a≠0),f′(x)=2x+2.且方程f(x)=0有兩個(gè)相等的實(shí)根.
(1)求y=f(x)的表達(dá)式;
(2)求y=f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(x,-4)與
b
=(1,
1
x
),則不等式
a
b
≤0的解集為(  )
A、{x|x≤-2或x≥2}
B、{x|-2≤x<0或x≥2}
C、{x|x≤-2或0≤x≤2}
D、{x|x≤-2或0<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x∈[0,log23•log34],試求函數(shù)y=(
1
4
)x-(
1
2
)x+2
的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a
a2-1
(ax-a-x)
,(a>0,a≠1)
(1)判斷并證明f(x)的單調(diào)性;
(2)若當(dāng)x∈(-∞,2)時(shí),f(x)-4<0恒成立,求a得取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a2+b2=2c2(c≠0),則直線ax+by+c=0被圓x2+y2=1所截得的弦長(zhǎng)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案