(本題滿分18分,第(1)小題4分,第(2)小題7分,第(3)小題7分)
對于兩個(gè)定義域相同的函數(shù)、,如果存在實(shí)數(shù)、使得=+,則稱函數(shù)是由“基函數(shù)、”生成的.
(1)若=+和=+2生成一個(gè)偶函數(shù),求的值;
(2)若=2+3-1由函數(shù)=+,=+,∈R且≠0生成,求+2的取值范圍;
(3)如果給定實(shí)系數(shù)基函數(shù)=+,=+≠0,問:任意一個(gè)一次函數(shù)是否都可以由它們生成?請給出你的結(jié)論并說明理由.
(1)0(2)-∞,-∪,+∞(3)若二元一次方程組的系數(shù)行列式=0,,則一定存在一次函數(shù)不能由基函數(shù)=+,=+≠0生成.
若-≠0,任意一個(gè)一次函數(shù)可由基函數(shù)=+,=+≠0生成
(1)由=+,=+2=++2,
∵是偶函數(shù),∴+=0,=-.
∴=,故=0;(4分)
(2)=2+3-1=+=++,
∴,,由≠0,得≠3,(7分)
∴+2=-=-+∈-∞,-∪,+∞.(11分)
(3)若一次函數(shù)=+≠0可由基函數(shù)、生成,[來源:學(xué).科.網(wǎng)]
則存在實(shí)數(shù)、使得=+,
于是.(13分)
若二元一次方程組的系數(shù)行列式=0,即-=0,則一定存在一次函數(shù)不能由基函數(shù)=+,=+≠0生成.(16分)
若-≠0,則對任意的和,方程組必有唯一解,
此時(shí),任意一個(gè)一次函數(shù)可由基函數(shù)=+,=+≠0生成.(18分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
在平行四邊形中,已知過點(diǎn)的直線與線段分別相交于點(diǎn)。若。
(1)求證:與的關(guān)系為;
(2)設(shè),定義函數(shù),點(diǎn)列在函數(shù)的圖像上,且數(shù)列是以首項(xiàng)為1,公比為的等比數(shù)列,為原點(diǎn),令,是否存在點(diǎn),使得?若存在,請求出點(diǎn)坐標(biāo);若不存在,請說明理由。
(3)設(shè)函數(shù)為上偶函數(shù),當(dāng)時(shí),又函數(shù)圖象關(guān)于直線對稱, 當(dāng)方程在上有兩個(gè)不同的實(shí)數(shù)解時(shí),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆上海市崇明中學(xué)高三第一學(xué)期期中考試試題數(shù)學(xué) 題型:解答題
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
對于數(shù)列,如果存在一個(gè)正整數(shù),使得對任意的()都有成立,那么就把這樣一類數(shù)列稱作周期為的周期數(shù)列,的最小值稱作數(shù)列的最小正周期,以下簡稱周期。例如當(dāng)時(shí)是周期為的周期數(shù)列,當(dāng)時(shí)是周期為的周期數(shù)列。
(1)設(shè)數(shù)列滿足(),(不同時(shí)為0),且數(shù)列是周期為的周期數(shù)列,求常數(shù)的值;
(2)設(shè)數(shù)列的前項(xiàng)和為,且.
①若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;
②若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;
(3)設(shè)數(shù)列滿足(),,,,數(shù)列的前項(xiàng)和為,試問是否存在,使對任意的都有成立,若存在,求出的取值范圍;不存在, 說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高三第一學(xué)期期中考試試題數(shù)學(xué) 題型:解答題
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
對于數(shù)列,如果存在一個(gè)正整數(shù),使得對任意的()都有成立,那么就把這樣一類數(shù)列稱作周期為的周期數(shù)列,的最小值稱作數(shù)列的最小正周期,以下簡稱周期。例如當(dāng)時(shí)是周期為的周期數(shù)列,當(dāng)時(shí)是周期為的周期數(shù)列。
(1)設(shè)數(shù)列滿足(),(不同時(shí)為0),且數(shù)列是周期為的周期數(shù)列,求常數(shù)的值;
(2)設(shè)數(shù)列的前項(xiàng)和為,且.
①若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;
②若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;
(3)設(shè)數(shù)列滿足(),,,,數(shù)列 的前項(xiàng)和為,試問是否存在,使對任意的都有成立,若存在,求出的取值范圍;不存在, 說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市十三校高三上學(xué)期第一次聯(lián)考試題文科數(shù)學(xué) 題型:解答題
(本題滿分18分,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分)
已知函數(shù),其中.
(1)當(dāng)時(shí),設(shè),,求的解析式及定義域;
(2)當(dāng),時(shí),求的最小值;
(3)設(shè),當(dāng)時(shí),對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分18分;第(1)小題5分,第(2)小題5分,第(3)小題8分)
設(shè)數(shù)列是等差數(shù)列,且公差為,若數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”.
(1)若,求證:該數(shù)列是“封閉數(shù)列”;
(2)試判斷數(shù)列是否是“封閉數(shù)列”,為什么?
(3)設(shè)是數(shù)列的前項(xiàng)和,若公差,試問:是否存在這樣的“封閉數(shù)列”,使;若存在,求的通項(xiàng)公式,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com