【題目】已知兩點(diǎn)A(﹣2,0)、B2,0),動(dòng)點(diǎn)P滿(mǎn)足

1)求動(dòng)點(diǎn)P的軌跡Ω的方程;

2)若橢圓上點(diǎn)(x0y0)處的切線方程是

①過(guò)直線lx4上一點(diǎn)MΩ的兩條切線,切點(diǎn)分別是P、Q,求證:直線PQ恒過(guò)定點(diǎn)N;

②是否存在實(shí)數(shù)λ,使得|PN|+|QN|λ|PN||QN|?若存在,求出λ的值;若不存在,說(shuō)明理由.

【答案】1y≠0);(2)①見(jiàn)解析②存在,

【解析】

(1)設(shè),再根據(jù)斜率之積列式求解即可.

(2)①根據(jù)題中所給的切線方程,設(shè),進(jìn)而求得過(guò)的切線方程,再代入坐標(biāo)即可求得的直線方程,再分析定點(diǎn)即可.

②由①有,代入橢圓方程求得交點(diǎn)關(guān)于縱坐標(biāo)的韋達(dá)定理,進(jìn)而表達(dá)出的關(guān)系式,再化簡(jiǎn)求解即可.

1)設(shè)Px,y),由題意kPAkPB,整理得:y≠0),

所以動(dòng)點(diǎn)P的軌跡Ω的方程:y≠0);

2)①設(shè)切點(diǎn)Px1,y1),Qx2,y2),由題意設(shè)M4,t),則切線方程分別是:,1,

因?yàn)閮蓷l切線過(guò)M點(diǎn),則x11,x21,

P,Q的坐標(biāo)滿(mǎn)足方程:xy1,而兩點(diǎn)確定唯一的直線,

所以直線PQ的方程:xy1,

顯然對(duì)任意的t值,點(diǎn)(1,0)都適合,

所以直線PQ恒過(guò)定點(diǎn)N1,0);

②將直線PQ方程:xy+1代入橢圓中整理得:312+4y2120,

即(12+t2y26ty270

y1+y2,y1y2,設(shè)y10,y20,

因?yàn)?/span>|PN|y1,

同理|QN|,

所以

.

|PN|+|QN||PN||QN|

故存在實(shí)數(shù),使得|PN|+|QN|λ|PN||QN|恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)X~N(μ1),Y~N(μ2),這兩個(gè)正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 對(duì)任意正數(shù)t,P(X≥t)≥P(Y≥t)

D. 對(duì)任意正數(shù)t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù)

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少?lài)崢?biāo)準(zhǔn)煤?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

1)若函數(shù)fx)在處有極值,求函數(shù)fx)的最大值;

2)是否存在實(shí)數(shù)b,使得關(guān)于x的不等式上恒成立?若存在,求出b的取值范圍;若不存在,說(shuō)明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程為,過(guò)點(diǎn)的直線的參數(shù)方程為為參數(shù)).

(Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)若直線與曲線交于、兩點(diǎn),求的值,并求定點(diǎn),兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生社團(tuán)組織活動(dòng)豐富,學(xué)生會(huì)為了解同學(xué)對(duì)社團(tuán)活動(dòng)的滿(mǎn)意程度,隨機(jī)選取了100位同學(xué)進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿(mǎn)意度評(píng)分值(百分制)按照[40,50),[50,60),[60,70),,[90,100]分成6組,制成如圖所示頻率分布直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的中位數(shù);

3)現(xiàn)從被調(diào)查的問(wèn)卷滿(mǎn)意度評(píng)分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進(jìn)行座談了解,再?gòu)倪@5人中隨機(jī)抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù),設(shè)函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)對(duì)任意均有的取值范圍.

注:為自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)從高三男生中隨機(jī)抽取n名學(xué)生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:

組號(hào)

分組

頻數(shù)

頻率

第1組

5

0.05

第2組

a

0.35

第3組

30

b

第4組

20

0.20

第5組

10

0.10

合計(jì)

n

1.00

(1)求出頻率分布表中的值,并完成下列頻率分布直方圖;

(2)為了能對(duì)學(xué)生的體能做進(jìn)一步了解,該校決定在第1,4,5組中用分層抽樣取7名學(xué)生進(jìn)行不同項(xiàng)目的體能測(cè)試,若在這7名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行引體向上測(cè)試,求第4組中至少有一名學(xué)生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“垛積術(shù)”(隙積術(shù))是由北宋科學(xué)家沈括在《夢(mèng)溪筆談》中首創(chuàng),南宋科學(xué)家楊輝、元代數(shù)學(xué)家朱世杰豐富和發(fā)展的一類(lèi)數(shù)列求和方法,有菱草垛、方垛、三角垛等等,某倉(cāng)庫(kù)中部分貨物堆放成“菱草垛”,自上而下,第一層1件,以后每一層比上一層多1件,最后一層是件,已知第一層貨物單價(jià)1萬(wàn)元,從第二層起,貨物的單價(jià)是上一層單價(jià)的,若這堆貨物總價(jià)是萬(wàn)元,則的值為________

查看答案和解析>>

同步練習(xí)冊(cè)答案