【題目】將函數(shù)y=sin(x+ )的圖象上各點的橫坐標(biāo)壓縮為原來的 倍(縱坐標(biāo)不變),所得函數(shù)在下面哪個區(qū)間單調(diào)遞增(
A.(﹣ ,
B.(﹣ ,
C.(﹣
D.(﹣ ,

【答案】A
【解析】解:將函數(shù)y=sin(x+ )圖象上每一點的橫坐標(biāo)縮短到原來的 (縱坐標(biāo)不變),得到函數(shù)y=sin(2x+ )的圖象;
令2kπ﹣ ≤2x+ ≤2kπ+ ,求得kπ﹣ ≤x≤kπ+ ,
可得函數(shù)g(x)的增區(qū)間為[kπ﹣ ,kπ+ ],k∈z,
當(dāng)k=0時,可得函數(shù)在區(qū)間(﹣ )單調(diào)遞增.
故選:A.
【考點精析】通過靈活運用函數(shù)y=Asin(ωx+φ)的圖象變換,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2分別是橢圓C: (a>b>0)的兩個焦點,P(1, )是橢圓上一點,且 |PF1|,|F1F2|, |PF2|成等差數(shù)列.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知動直線l過點F2 , 且與橢圓C交于A,B兩點,試問x軸上是否存在定點Q,使得 =﹣ 恒成立?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2 sinθ.
(1)求圓C的直角做標(biāo)方程;
(2)圓C的圓心為C,點P為直線l上的動點,求|PC|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)準(zhǔn)備將閑置的一直角三角形地塊開發(fā)成公共綠地,圖中.設(shè)計時要求綠地部分(如圖中陰影部分所示)有公共綠地走道,且兩邊是兩個關(guān)于走道對稱的三角形().現(xiàn)考慮方便和綠地最大化原則,要求點與點均不重合,落在邊上且不與端點重合,設(shè).

(1)若,求此時公共綠地的面積;

(2)為方便小區(qū)居民的行走,設(shè)計時要求的長度最短,求此時綠地公共走道的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:函數(shù)f(x)=x2-2mx+4在[2,+∞)上單調(diào)遞增,命題q:關(guān)于x的不等式mx2+4(m-2)x+4>0的解集為R.若pq為真命題,pq為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且c= asinC﹣ccosA
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AB為圓O的直徑,點D為線段AB上一點,且AD= DB,點C為圓O上一點,且BC= AC.點P在圓O所在平面上的正投影為點D,PD=DB.

(1)求證:PA⊥CD;
(2)求二面角C﹣PB﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的有(  )

①函數(shù)y的定義域為{x|x1};

②函數(shù)yx2x+1(0,+)上是增函數(shù);

③函數(shù)f(x)=x3+1(xR),若f(a)=2,則f(-a)=-2;

④已知f(x)R上的增函數(shù),若ab>0,則有f(a)+f(b)>f(-a)+f(-b).

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xetx﹣ex+1,其中t∈R,e是自然對數(shù)的底數(shù).
(1)若方程f(x)=1無實數(shù)根,求實數(shù)t的取值范圍;
(2)若函數(shù)f(x)在(0,+∞)內(nèi)為減函數(shù),求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案