已知橢圓E:的離心率為,右焦點(diǎn)為F,且橢圓E上的點(diǎn)到點(diǎn)F距離的最小值為2.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的左、右頂點(diǎn)分別為A,B,過點(diǎn)A的直線l與橢圓E及直線x=8分別相交于點(diǎn)M,N.
(ⅰ)當(dāng)過A,F(xiàn),N三點(diǎn)的圓半徑最小時(shí),求這個(gè)圓的方程;
(ⅱ)若,求△ABM的面積.

(1)
(2)   12

解析試題分析:(1)由離心率為,橢圓E上的點(diǎn)到點(diǎn)F距離的最小值為2,即a﹣c=2聯(lián)立方程組求a,c的值,然后利用b2=a2﹣c2求出b2,則橢圓方程可求;
(2)(。┰O(shè)出圓的一般方程,設(shè)N(8,t),把三點(diǎn)A(﹣4,0),F(xiàn)(2,0),N(8,t)代入圓的方程整理成標(biāo)準(zhǔn)式后利用基本不等式求出半徑的最小值,同時(shí)求得半徑最小時(shí)的圓的方程;
(ⅱ)設(shè)出直線l的方程,和橢圓方程聯(lián)立后利用根與系數(shù)關(guān)系求出M點(diǎn)的坐標(biāo),由,借助于向量數(shù)量積求出直線的斜率,進(jìn)一步得到M點(diǎn)的縱坐標(biāo),則△ABM的面積可求.
(1)由已知,,且a﹣c=2,所以a=4,c=2,所以b2=a2﹣c2=12,
所以橢圓E的方程為
(2)(ⅰ)由(1),A(﹣4,0),F(xiàn)(2,0),設(shè)N(8,t).
設(shè)圓的方程為x2+y2+dx+ey+f=0,將點(diǎn)A,F(xiàn),N的坐標(biāo)代入,得
,解得
所以圓的方程為,
,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4b/1/5uvlv1.png" style="vertical-align:middle;" />,當(dāng)且僅當(dāng)時(shí),圓的半徑最小,
故所求圓的方程為
(ⅱ)由對稱性不妨設(shè)直線l的方程為y=k(x+4)(k>0).
,得(3+4k2)x2+32k2x+64k2﹣48=0
由﹣4+xM=,得,所以,
所以,,
所以==,
化簡,得16k4﹣40k2﹣9=0,
解得,或,即,或,
此時(shí)總有yM=3,所以△ABM的面積為
考點(diǎn):本題考查了圓與橢圓的標(biāo)準(zhǔn)方程,考查了直線與圓錐曲線的關(guān)系,直線與圓錐曲線聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關(guān)系的判定,弦長問題、最值問題、對稱問題、軌跡問題、面積問題等.突出考查了數(shù)形結(jié)合、分類討論、函數(shù)與方程、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法.屬難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知曲線,曲線,P是平面上一點(diǎn),若存在過點(diǎn)P的直線與都有公共點(diǎn),則稱P為“C1—C2型點(diǎn)”.

(1)在正確證明的左焦點(diǎn)是“C1—C2型點(diǎn)”時(shí),要使用一條過該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線有公共點(diǎn),求證,進(jìn)而證明原點(diǎn)不是“C1—C2型點(diǎn)”;
(3)求證:圓內(nèi)的點(diǎn)都不是“C1—C2型點(diǎn)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的一個(gè)頂點(diǎn)為,焦點(diǎn)在軸上,中心在原點(diǎn).若右焦點(diǎn)到直線的距離為3.    
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓相交于不同的兩點(diǎn).當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,橢圓C以過點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)直線是曲線的一條切線,
(Ⅰ)求切點(diǎn)坐標(biāo)及的值;
(Ⅱ)當(dāng)時(shí),存在,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓的左焦點(diǎn)為,過點(diǎn)的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為,的中垂線與軸和軸分別交于兩點(diǎn).

(1)若點(diǎn)的橫坐標(biāo)為,求直線的斜率;
(2)記△的面積為,△為原點(diǎn))的面積為.試問:是否存在直線,使得?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),過點(diǎn)的直線與拋物線交于A,B兩點(diǎn),
(1)寫出拋物線的標(biāo)準(zhǔn)方程 (2)求⊿ABO的面積最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓的左焦點(diǎn)為,過點(diǎn)的直線交橢圓于,兩點(diǎn).當(dāng)直線經(jīng)過橢圓的一個(gè)頂點(diǎn)時(shí),其傾斜角恰為

(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)線段的中點(diǎn)為的中垂線與軸和軸分別交于兩點(diǎn),
記△的面積為,△為原點(diǎn))的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

分別求適合下列條件圓錐曲線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)為、且過點(diǎn)橢圓;
(2)與雙曲線有相同的漸近線,且過點(diǎn)的雙曲線.

查看答案和解析>>

同步練習(xí)冊答案