科目: 來源:2013屆安徽省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
若命題“不成立”是真命題,則實(shí)數(shù)的取值范圍是_______。
查看答案和解析>>
科目: 來源:2013屆安徽省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
定義“等和數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)與它的后一項(xiàng)的和都為同一個(gè)常數(shù),那么這個(gè)數(shù)列 叫做等和數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公和。已知數(shù)列是等和數(shù)列,且,公和為5,那么的值為: _ ;這個(gè)數(shù)列的前n項(xiàng)和的計(jì)算公式為:_ ___.
查看答案和解析>>
科目: 來源:2013屆安徽省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
命題方程有兩個(gè)不等的正實(shí)數(shù)根, 命題方程無實(shí)數(shù)根。若“或”為真命題,求的取值范圍。
【解析】本試題主要考查了命題的真值問題,以及二次方程根的綜合運(yùn)用。
解:“p或q”為真命題,則p為真命題,或q為真命題,或q和p都是真命題
當(dāng)p為真命題時(shí),則,得;
當(dāng)q為真命題時(shí),則
當(dāng)q和p都是真命題時(shí),得
查看答案和解析>>
科目: 來源:2013屆安徽省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知復(fù)數(shù),,求的取值范圍。
【解析】利用復(fù)數(shù)相等的概念,結(jié)合三角方程,把參數(shù)
查看答案和解析>>
科目: 來源:2013屆安徽省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知a、b、c是互不相等的非零實(shí)數(shù).若用反證法證明三個(gè)方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一個(gè)方程有兩個(gè)相異實(shí)根.
【解析】本試題主要考查了二次方程根的問題的綜合運(yùn)用。運(yùn)用反證法思想進(jìn)行證明。
先反設(shè),然后推理論證,最后退出矛盾。證明:假設(shè)三個(gè)方程中都沒有兩個(gè)相異實(shí)根,
則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0.顯然不成立。
證明:假設(shè)三個(gè)方程中都沒有兩個(gè)相異實(shí)根,
則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0. ①
由題意a、b、c互不相等,∴①式不能成立.
∴假設(shè)不成立,即三個(gè)方程中至少有一個(gè)方程有兩個(gè)相異實(shí)根.
查看答案和解析>>
科目: 來源:2013屆安徽省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖,在三棱柱中,側(cè)面,為棱上異于的一點(diǎn),,已知,求:
(Ⅰ)異面直線與的距離;
(Ⅱ)二面角的平面角的正切值.
【解析】第一問中,利用建立空間直角坐標(biāo)系
解:(I)以B為原點(diǎn),、分別為Y,Z軸建立空間直角坐標(biāo)系.由于,
在三棱柱中有
,
設(shè)
又側(cè)面,故. 因此是異面直線的公垂線,則,故異面直線的距離為1.
(II)由已知有故二面角的平面角的大小為向量與的夾角.
查看答案和解析>>
科目: 來源:2013屆安徽省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知f(n)=(2n+7)3n+9,存在自然數(shù)m,使得對(duì)任意正整數(shù)n,都能使m整除f(n),猜測(cè)出最大的m的值。并用數(shù)學(xué)歸納法證明你的猜測(cè)是正確的。
【解析】本試題主要考查了歸納猜想的運(yùn)用,以及數(shù)學(xué)歸納法的證明。
∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36
∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除
然后證明n=1,2時(shí),由上得證,設(shè)n=k(k≥2)時(shí),
f(k)=(2k+7)·3k+9能被36整除,則n=k+1時(shí),
f(k+1)-f(k)=(2k+9)·3k+1?-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k
=(4k+20)·3k=36(k+5)·3k-2?(k≥2) 證明得到。解析 ∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36
∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除
證明 n=1,2時(shí),由上得證,設(shè)n=k(k≥2)時(shí),
f(k)=(2k+7)·3k+9能被36整除,則n=k+1時(shí),
f(k+1)-f(k)=(2k+9)·3k+1?-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k
=(4k+20)·3k=36(k+5)·3k-2?(k≥2) f(k+1)能被36整除
∵f(1)不能被大于36的數(shù)整除,∴所求最大的m值等于36
查看答案和解析>>
科目: 來源:2013屆安徽省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).
(1)求正實(shí)數(shù)a的取值范圍;
(2)比較的大小,說明理由;
(3)求證:(n∈N*, n≥2)
【解析】第一問中,利用
解:(1)由已知:,依題意得:≥0對(duì)x∈[1,+∞恒成立
∴ax-1≥0對(duì)x∈[1,+∞恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),
∴n≥2時(shí):f()=
(3) ∵ ∴
查看答案和解析>>
科目: 來源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
在下列命題中正確是 ( )
A. “x=2時(shí), x2-3x+2=0”的否命題; B.“若b=3,則b2=9”的逆命題;
C.若ac>bc,則a>b; D.“相似三角形的對(duì)應(yīng)角相等”的逆否命題
查看答案和解析>>
科目: 來源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
平面內(nèi)有一長(zhǎng)度為2的線段AB和一動(dòng)點(diǎn)P,若滿足|PA|+|PB|=8,則|PA|的取值范圍是 ( )
A.[1,4]; B.[2,6]; C.[3,5 ]; D. [3,6].
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com