科目: 來源: 題型:解答題
(12分)(理)如圖9-6-6,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)問BC邊上是否存在Q點,使⊥,說明理由.
(2)問當Q點惟一,且cos<,>=時,求點P的位置.
查看答案和解析>>
科目: 來源: 題型:解答題
(14分)如圖,圓柱內有一個三棱柱,三棱柱的 底面為圓柱
底面的內接三角形,且是圓的直徑。
(I)證明:平面平面;
(II)設,在圓柱內隨機選取一點,記該點取自三棱柱內的概率為。
(i)當點在圓周上運動時,求的最大值;
(ii)如果平面與平面所成的角為。當取最大值時,求的值。
查看答案和解析>>
科目: 來源: 題型:解答題
(14分)如圖,四棱錐P—ABCD的底面是AB=2,BC=的矩形,側面PAB
是等邊三角形,且側面PAB⊥底面ABCD
(I)證明:側面PAB⊥側面PBC;
(II)求側棱PC與底面ABCD所成的角;
(III)求直線AB與平面PCD的距離.
查看答案和解析>>
科目: 來源: 題型:解答題
(12分)如圖,四邊形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在線段PD上存在點E使得BE⊥CE,求線段AD的取值范圍,并求當線段PD上有且只
有一個點E使得BE⊥CE時,二面角E—BC—A正切值的大小。
查看答案和解析>>
科目: 來源: 題型:解答題
(12分)平面EFGH分別平行空間四邊形ABCD中的CD與AB且交BD、AD、
AC、BC于E、F、G、H.CD=a,AB=b,CD⊥AB.
(1)求證EFGH為矩形;
(2)點E在什么位置,SEFGH最大?
查看答案和解析>>
科目: 來源: 題型:解答題
(12分)在平面α內有△ABC,在平面α外有點S,斜線SA⊥AC,SB⊥BC,且
斜線SA、SB與平面α所成角相等。
(1)求證:AC=BC
(2)又設點S到α的距離為4cm,AC⊥BC且AB=6cm,求S與AB的距離。
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12)如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,點D是AB的中點
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求二面角的平面角的正切值.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)如圖,在多面體ABCDE中,AE⊥面ABC,DB//AE,且AC=AB=BC=AE=1,BD=2,F(xiàn)為CD中點。
(1)求證:EF⊥平面BCD;
(2)求多面體ABCDE的體積;
(3)求平面ECD和平面ACB所成的銳二面角的余弦值。
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)如圖,在多面體ABDEC中,AE平面ABC,BD//AE,且AC=AB=BC=AE=1,BD=2,F(xiàn)為CD中點。
(I)求證:EF//平面ABC;
(II)求證:平面BCD;
(III)求多面體ABDEC的體積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com