相關(guān)習(xí)題
 0  155354  155362  155368  155372  155378  155380  155384  155390  155392  155398  155404  155408  155410  155414  155420  155422  155428  155432  155434  155438  155440  155444  155446  155448  155449  155450  155452  155453  155454  155456  155458  155462  155464  155468  155470  155474  155480  155482  155488  155492  155494  155498  155504  155510  155512  155518  155522  155524  155530  155534  155540  155548  266669 

科目: 來(lái)源: 題型:解答題

學(xué)校為測(cè)評(píng)班級(jí)學(xué)生對(duì)任課教師的滿意度,采用“100分制”打分的方式來(lái)計(jì)分.現(xiàn)從某班學(xué)生中隨機(jī)抽取10名,以下莖葉圖記錄了他們對(duì)某教師的滿意度分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉):

(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)若滿意度不低于98分,則評(píng)價(jià)該教師為“優(yōu)秀”.求從這10人中隨機(jī)選取3人,至多有1人評(píng)價(jià)
該教師是“優(yōu)秀”的概率;
(3)以這10人的樣本數(shù)據(jù)來(lái)估計(jì)整個(gè)班級(jí)的總體數(shù)據(jù),若從該班任選3人,記表示抽到評(píng)價(jià)該教師為
“優(yōu)秀”的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出t該產(chǎn)品獲利潤(rùn)元,未售出的產(chǎn)品,每t虧損元。根據(jù)歷史資料,得到銷售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖,如圖所示。經(jīng)銷商為下一個(gè)銷售季度購(gòu)進(jìn)了t該農(nóng)產(chǎn)品,以(單位:t,)表示下一個(gè)銷售季度內(nèi)的市場(chǎng)需求量,(單位:元)表示下一個(gè)銷售季度內(nèi)銷商該農(nóng)產(chǎn)品的利潤(rùn)。

(1)將表示為的函數(shù);(2)根據(jù)直方圖估計(jì)利潤(rùn)不少于57000元的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出t該產(chǎn)品獲利潤(rùn)元,未售出的產(chǎn)品,每t虧損元。根據(jù)歷史資料,得到銷售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖,如圖所示。經(jīng)銷商為下一個(gè)銷售季度購(gòu)進(jìn)了t該農(nóng)產(chǎn)品,以(單位:t,)表示下一個(gè)銷售季度內(nèi)的市場(chǎng)需求量,(單位:元)表示下一個(gè)銷售季度內(nèi)銷商該農(nóng)產(chǎn)品的利潤(rùn)。

(1)將表示為的函數(shù);
(2)根據(jù)直方圖估計(jì)利潤(rùn)不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點(diǎn)值的概率(例如:若,則取,且的概率等于需求量落入的概率),求利潤(rùn)的數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100],得到如圖所示的頻率分布直方圖.

(1)求圖中實(shí)數(shù)a的值;
(2)若該校高一年級(jí)共有學(xué)生640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績(jī)?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

從某校高二年級(jí)名男生中隨機(jī)抽取名學(xué)生測(cè)量其身高,據(jù)測(cè)量被測(cè)學(xué)生的身高全部在之間.將測(cè)量結(jié)果按如下方式分成組:第一組,第二組, ,第八組,如下右圖是按上述分組得到的頻率分布直方圖的一部分.已知第一組與第八組的人數(shù)相同,第六組、第七組和第八組的人數(shù)依次成等差數(shù)列.
頻率分布表如下:

分組
頻數(shù)
頻率
頻率/組距
 
 
 
 








 
 
 
 
頻率分布直方圖如下:

(1)求頻率分布表中所標(biāo)字母的值,并補(bǔ)充完成頻率分布直方圖;
(2)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取名男生,記他們的身高分別為,求滿足:的事件的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

為考查某種藥物預(yù)防疾病的效果,進(jìn)行動(dòng)物試驗(yàn),得到如下丟失數(shù)據(jù)的列聯(lián)表:

 
患病
未患病
總計(jì)
沒(méi)服用藥
20
30
50
服用藥


50
總計(jì)


100
設(shè)從沒(méi)服用藥的動(dòng)物中任取兩只,未患病數(shù)為;從服用藥物的動(dòng)物中任取兩只,未患病數(shù)為,工作人員曾計(jì)算過(guò).
(1)求出列聯(lián)表中數(shù)據(jù)的值; 
(2)能夠以99%的把握認(rèn)為藥物有效嗎?參考公式:,其中;
①當(dāng)K2≥3.841時(shí)有95%的把握認(rèn)為、有關(guān)聯(lián);
②當(dāng)K2≥6.635時(shí)有99%的把握認(rèn)為、有關(guān)聯(lián).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

為了調(diào)查某大學(xué)學(xué)生在某天上網(wǎng)的時(shí)間,隨機(jī)對(duì)100名男生和100名女生進(jìn)行了不記名的問(wèn)卷調(diào)查.得到了如下的統(tǒng)計(jì)結(jié)果:
表1:男生上網(wǎng)時(shí)間與頻數(shù)分布表

上網(wǎng)時(shí)間(分鐘)
[30,40)
[40,50)
[50,60)
[60,70)
[70,80]
人數(shù)
5
25
30
25
15
表2:女生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘)
[30,40)
[40,50)
[50,60)
[60,70)
[70,80]
人數(shù)
10
20
40
20
10
(1)從這100名男生中任意選出3人,求其中恰有1人上網(wǎng)時(shí)間少于60分鐘的概率;
(2)完成下面的2×2列聯(lián)表,并回答能否有90%的把握認(rèn)為“大學(xué)生上網(wǎng)時(shí)間與性別有關(guān)”?
 
上網(wǎng)時(shí)間少于60分鐘
上網(wǎng)時(shí)間不少于60分鐘
合計(jì)
男生
 
 
 
女生
 
 
 
合計(jì)
 
 
 
附:K2
P(K2≥k0)
0.100
0.050
0.025
0.010
0.005
k0
2.706
3.841
5.024
6.635
7.879

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2012年3月2日,國(guó)家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》.其中規(guī)定:居民區(qū)中的PM2.5(PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱可入肺顆粒物)年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米.某城市環(huán)保部門隨機(jī)抽取了一居民區(qū)去年40天的PM2.5的24小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:

組別
PM2.5(微克/立方米)
頻數(shù)(天)
頻率
第一組
(0,15]
4
0.1
第二組
(15,30]
12
0.3
第三組
(30,45]
8
0.2
第四組
(45,60]
8
0.2
第五組
(60,75]
4
0.1
第六組
(75,90)
4
0.1
(1)寫(xiě)出該樣本的眾數(shù)和中位數(shù)(不必寫(xiě)出計(jì)算過(guò)程);
(2)求該樣本的平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?說(shuō)明理由;
(3)將頻率視為概率,對(duì)于去年的某2天,記這2天中該居民區(qū)PM2.5的24小時(shí)平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

某種報(bào)紙,進(jìn)貨商當(dāng)天以每份1元從報(bào)社購(gòu)進(jìn),以每份2元售出.若當(dāng)天賣不完,剩余報(bào)紙報(bào)社以每份0.5元的價(jià)格回收.根據(jù)市場(chǎng)統(tǒng)計(jì),得到這個(gè)季節(jié)的日銷售量X(單位:份)的頻率分布直方圖(如圖所示),將頻率視為概率.
 
(1)求頻率分布直方圖中a的值;
(2)若進(jìn)貨量為n(單位:份),當(dāng)nX時(shí),求利潤(rùn)Y的表達(dá)式;
(3)若當(dāng)天進(jìn)貨量n=400,求利潤(rùn)Y的分布列和數(shù)學(xué)期望E(Y)(統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

某單位N名員工參加“社區(qū)低碳你我他”活動(dòng),他們的年齡在25歲至50歲之間,按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表.


(1)求正整數(shù)的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求恰有1人在第3組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案