相關(guān)習題
 0  155822  155830  155836  155840  155846  155848  155852  155858  155860  155866  155872  155876  155878  155882  155888  155890  155896  155900  155902  155906  155908  155912  155914  155916  155917  155918  155920  155921  155922  155924  155926  155930  155932  155936  155938  155942  155948  155950  155956  155960  155962  155966  155972  155978  155980  155986  155990  155992  155998  156002  156008  156016  266669 

科目: 來源: 題型:解答題

1號箱中有2個白球和4個紅球,2號箱中有5個白球和3個紅球,現(xiàn)隨機地從1號箱中取出一球放入2號箱,然后從2號箱隨機取出一球,問從2號箱取出紅球的概率是多少?

查看答案和解析>>

科目: 來源: 題型:解答題

拋擲紅、藍兩顆骰子,設(shè)事件A為“藍色骰子的點數(shù)為3或6”,事件B為“兩顆骰子的點數(shù)之和大于8”.
(1)求P(A),P(B),P(AB);
(2)當已知藍色骰子的點數(shù)為3或6時,求兩顆骰子的點數(shù)之和大于8的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

某種動物由出生算起活到20歲的概率為0.8,活到25歲的概率為0.4,現(xiàn)有一個20歲的動物,求它能活到25歲的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

某超市在節(jié)日期間進行有獎促銷,凡在該超市購物滿400元的顧客,將獲得一次摸獎機會,規(guī)則如下:獎盒中放有除顏色外完全相同的1個紅球,1個黃球,1個白球和1個黑球.顧客不放回的每次摸出1個球,若摸到黑球則停止摸獎,否則就繼續(xù)摸球.規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.
(1)求1名顧客摸球2次停止摸獎的概率;
(2)記為1名顧客摸獎獲得的獎金數(shù)額,求隨機變量的分布律和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:解答題

對一批共50件的某電器進行分類檢測,其重量(克)統(tǒng)計如下:

重量段
[80,85)
[85,90)
[90,95)
[95,100]
件數(shù)
5
a
15
b
規(guī)定重量在82克及以下的為“A”型,重量在85克及以上的為“B”型,已知該批電器有“A”型2件
(1)從該批電器中任選1件,求其為“B”型的概率;
(2)從重量在[80,85)的5件電器中,任選2件,求其中恰有1件為“A”型的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

為了倡導健康、低碳、綠色的生活理念,某市建立了公共自行車服務系統(tǒng)鼓勵市民租用公共自行車出行公共自行車按每車每次的租用時間進行收費,具體收費標準如下:
①租用時間不超過1小時,免費;
②租用時間為1小時以上且不超過2小時,收費1元;
③租用時間為2小時以上且不超過3小時,收費2元;
④租用時間超過3小時的時段,按每小時2元收費(不足1小時的部分按1小時計算)已知甲、乙兩人獨立出行,各租用公共自行車一次,兩人租車時間都不會超過3小時,設(shè)甲、乙租用時間不超過1小時的概率分別是0.4和0.5 ,租用時間為1小時以上且不超過2小時的概率分別是0.5和0.3.
(1)求甲、乙兩人所付租車費相同的概率;
(2)設(shè)甲、乙兩人所付租車費之和為隨機變量,求的分布列和數(shù)學期望E

查看答案和解析>>

科目: 來源: 題型:解答題

A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析,X1和X2的分布列分別為

X1
5%
10%
P
0.8
0.2
 
X2
2%
8%
12%
P
0.2
0.5
0.3
(1)在A,B兩個項目上各投資100萬元,Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差V(Y1)、V(Y2);
(2)將x(0≤x≤100)萬元投資A項目,100-x萬元投資B項目,f(x)表示投資A項目所得利潤的方差與投資B項目所得利潤的方差的和.求f(x)的最小值,并指出x為何值時,f(x)取到最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

甲、乙兩名射手各打了10發(fā)子彈,其中甲擊中環(huán)數(shù)與次數(shù)如下表

環(huán)數(shù)
5
6
7
8
9
10
次數(shù)
1
1
1
1
2
4
乙射擊的概率分布列如表
環(huán)數(shù)
7
8
9
10
概率
0.2
0.3
p
0.1
(1)若甲,乙兩人各打一槍,求共擊中18環(huán)的概率及p的值;
(2)比較甲,乙兩人射擊水平的優(yōu)劣.

查看答案和解析>>

科目: 來源: 題型:解答題

甲、乙兩人各進行3次射擊,甲每次擊中目標的概率為,乙每次擊中目標的概率為.
(1)求乙至多擊中目標2次的概率;
(2)記甲擊中目標的次數(shù)為Z,求Z的分布列、數(shù)學期望和標準差.

查看答案和解析>>

科目: 來源: 題型:解答題

某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計資料預測,今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺大型設(shè)備正在該地工作,為了保護設(shè)備,施工部門提出以下三種方案:
方案1:運走設(shè)備,此時需花費4000元;
方案2:建一保護圍墻,需花費1000元,但圍墻只能抵御一個河流發(fā)生的洪水,當兩河流同時發(fā)生洪水時,設(shè)備仍將受損,損失約56000元;
方案3:不采取措施,此時,當兩河流都發(fā)生洪水時損失達60000元,只有一條河流發(fā)生洪水時,損失為10000元.
(1)試求方案3中損失費X(隨機變量)的分布列;
(2)試比較哪一種方案好.

查看答案和解析>>

同步練習冊答案