相關習題
 0  159029  159037  159043  159047  159053  159055  159059  159065  159067  159073  159079  159083  159085  159089  159095  159097  159103  159107  159109  159113  159115  159119  159121  159123  159124  159125  159127  159128  159129  159131  159133  159137  159139  159143  159145  159149  159155  159157  159163  159167  159169  159173  159179  159185  159187  159193  159197  159199  159205  159209  159215  159223  266669 

科目: 來源:不詳 題型:解答題

函數(shù)y=f(x)在區(qū)間(0,+∞)內可導.導函數(shù)f(x)是減函數(shù),且f(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在點(x0,f(x0))處的切線方程.
(1)用x0,f(x0),f(x0)表示m;
(2)證明:當x∈(0,+∞)時,g(x)≥f(x);
(3)若關于x的不等式x2+1≥ax+b≥
3
2
x
2
3
在(0,+∞)上恒成立,其中a,b為實數(shù),求b的取值范圍及a,b所滿足的關系.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

對于任意的x∈R,不等式2x2-a
x2+1
+3>0
恒成立,則實數(shù)a的取值范圍是(  )
A.a<2
2
B.a≤2
2
C.a<3D.a≤3

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3,其中a為實數(shù).
(1)設t>0為常數(shù),求函數(shù)f(x)在區(qū)間[t,t+2]上的最小值;
(2)若對一切x∈(0,+∞),不等式2f(x)≥g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x-
1
2|x|

(1)設集合A={x|f(x)≤
15
4
}
,B={x|x2-6x+p<0},若A∩B≠∅,求實數(shù)p的取值范圍;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

若函數(shù)f(x)=(m-1)x2+2mx+3為偶函數(shù),則f(0),f(1),f(-
2
)的大小關系為______.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知f(x)=(
x-1
x+1
)2
(x>1),
(1)若g(x)=
1
f-1(x)
+
x
+2
,求g(x)的最小值;
(2)若不等式(1-
x
)•f-1(x)>m•(m-
x
)
對于一切x∈[
1
4
1
2
]
恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知二次函數(shù)f(x)=ax2-bx+1.
(1)若f(x)<0的解集是(
1
4
,
1
3
)
,求實數(shù)a,b的值;
(2)若a+b+2=0,且函數(shù)f(x)>3x+1,x∈(0,1)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

已知函數(shù)f(x)=ln(ex+a)(e是自然對數(shù)的底數(shù),a為常數(shù))是實數(shù)集R上的奇函數(shù),若函數(shù)g(x)=lnx-f(x)(x2-2ex+m)在(0,+∞)上有兩個零點,則實數(shù)m的取值范圍是( 。
A.(
1
e
,e2+
1
e
B.(0,e2+
1
e
C.(e2+
1
e
,+∞)
D.(-∞,e2+
1
e

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知函數(shù)f(logax)=
a
a-1
(x-
1
x
)(a>0且a≠1).
(1)求f(x)解析式并判斷f(x)的奇偶性;
(2)對于(1)中的函數(shù)f(x),若?x1,x2∈R當x1<x2時都有f(x1)<f(x2)成立,求滿足條件f(1-m)+f(m2-1)<0的實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

“a=0”是“函數(shù)y=ln|x-a|為偶函數(shù)”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分又不必要條件

查看答案和解析>>

同步練習冊答案