相關(guān)習(xí)題
 0  169335  169343  169349  169353  169359  169361  169365  169371  169373  169379  169385  169389  169391  169395  169401  169403  169409  169413  169415  169419  169421  169425  169427  169429  169430  169431  169433  169434  169435  169437  169439  169443  169445  169449  169451  169455  169461  169463  169469  169473  169475  169479  169485  169491  169493  169499  169503  169505  169511  169515  169521  169529  266669 

科目: 來源:不詳 題型:解答題

(本小題滿分15分)平面直角坐標(biāo)系xOy中,已知⊙M經(jīng)過點F1(0,-c),F2(0,c),Ac,0)三點,其中c>0.
(1)求⊙M的標(biāo)準(zhǔn)方程(用含的式子表示);
(2)已知橢圓(其中)的左、右頂點分別為D、B,
Mx軸的兩個交點分別為A、C,且A點在B點右側(cè),C點在D點右側(cè).
①求橢圓離心率的取值范圍;
②若A、B、M、O、C、DO為坐標(biāo)原點)依次均勻分布在x軸上,問直線MF1與直線DF2的交點是否在一條定直線上?若是,請求出這條定直線的方程;若不是,請說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

已知橢圓中心在原點,一個焦點為(,0),且長軸長是短軸長的2倍,則該橢圓的標(biāo)準(zhǔn)方程是      

查看答案和解析>>

科目: 來源:不詳 題型:填空題

橢圓(1-m)x2my2=1的長軸長是                      .

查看答案和解析>>

科目: 來源:不詳 題型:填空題

曲線的長度是          .

查看答案和解析>>

科目: 來源:不詳 題型:填空題

我們可以運用下面的原理解決一些相關(guān)圖形的面積問題:如果與一固定直線平行的直線被甲、乙兩個封閉圖形所截得線段的比為定值,那么甲的面積是乙的面積的倍,你可以從給出的簡單圖形①(甲:大矩形、乙:小矩形)、②(甲:大直角三角形乙:小直角三角形)中體會這個原理,現(xiàn)在圖③中的曲線分別是,運用上面的原理,圖③中橢圓的面積為                

查看答案和解析>>

科目: 來源:不詳 題型:填空題

已知AB是橢圓的長軸,若把該長軸2010等分,過每個等分點作AB的垂線,依次交橢圓的上半部分于點,設(shè)左焦點為,則=               

查看答案和解析>>

科目: 來源:不詳 題型:單選題

已知橢圓,長軸在軸上. 若焦距為,則等于(  )
A..B..C..D.8.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

定義:平面內(nèi)兩條相交但不垂直的數(shù)軸構(gòu)成的坐標(biāo)系(兩條數(shù)軸的原點重合且單位長度相同)稱為平面斜坐標(biāo)系;在平面斜坐標(biāo)系xOy中,若 (其中分別是斜坐標(biāo)系x軸、y軸正方向上的單位向量,x、y∈R,O為坐標(biāo)系原點),則有序數(shù)對(x,y)稱為點P的斜坐標(biāo).在平面斜坐標(biāo)系xOy中,若=120°,點M的斜坐標(biāo)為(1,2),則以點M為圓心,1為半徑的圓在斜坐標(biāo)系xOy中的方程是                       (    )
A.B.
C.D.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

我國計劃發(fā)射火星探測器,該探測器的運行軌道是以火星(其半徑百公里)的中心為一個焦點的橢圓. 如圖,已知探測器的近火星點(軌道上離火星表面最近的點)到火星表面的距離為百公里,遠(yuǎn)火星點(軌道上離火星表面最遠(yuǎn)的點)到火星表面的距離為800百公里. 假定探測器由近火星點第一次逆時針運行到與軌道中心的距離為百公里時進(jìn)行變軌,其中、分別為橢圓的長半軸、短半軸的長,求此時探測器與火星表面的距離(精確到1百公里).

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中,是對應(yīng)的焦點。A1,A2和B1,B2是“果圓”與x,y軸的交點,M是線段A1A2的中點.
(1) 若三角形是底邊F1F2長為6,腰長為5的等腰三角形,求“果圓”的方程;
(2)若“果圓”方程為:過F0的直線l交“果圓”于y軸右邊的Q,N點,求△OQN的面積S△OQN的取值范圍
(3) 若是“果圓”上任意一點,求取得最小值時點的橫坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案