相關習題
 0  169407  169415  169421  169425  169431  169433  169437  169443  169445  169451  169457  169461  169463  169467  169473  169475  169481  169485  169487  169491  169493  169497  169499  169501  169502  169503  169505  169506  169507  169509  169511  169515  169517  169521  169523  169527  169533  169535  169541  169545  169547  169551  169557  169563  169565  169571  169575  169577  169583  169587  169593  169601  266669 

科目: 來源:不詳 題型:解答題

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
,過右焦點F且斜率為
2
的直線l交橢圓E于兩點A,B,若以原點為圓心,
6
3
為半徑的圓與直線l相切
(1)求焦點F的坐標;
(2)以OA,OB為鄰邊的平行四邊形OACB中,頂點C也在橢圓E上,求橢圓E的方程.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

過點(0,1)引直線與雙曲線x2-y2=1只有一個公共點,這樣的直線共有( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目: 來源:不詳 題型:解答題

設橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右頂點分別為A(-
2
,0)、B(
2
,0),離心率e=
2
2
.過該橢圓上任一點P作PQ⊥x軸,垂足為Q,點C在QP的延長線上,且|PC|=(
2
-1)|PQ|.
(1)求橢圓的方程;
(2)求動點C的軌跡E的方程;
(3)設直線MN過橢圓的右焦點與橢圓相交于M、N兩點,且|MN|=
8
2
7
,求直線MN的方程.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
2
3
3
,且過點P(
6
,1).
(Ⅰ)求雙曲線C的方程;
(Ⅱ)若直線l:y=kx+
2
與雙曲線C恒有兩個不同的交點A和B,且
OA
OB
>2(O為坐標原點),求實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標原點,離心率e=2,點M(
5
,
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點,且
OP
OQ
=0
.問:
1
|OP|2
+
1
|OQ|2
是否為定值?若是請求出該定值,若不是請說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),
(1)若橢圓的長軸長為4,離心率為
3
2
,求橢圓的標準方程;
(2)在(1)的條件下,設過定點M(0,2)的直線l與橢圓C交于不同的兩點A,B,且∠AOB為銳角(O為坐標原點),求直線l的斜率k的取值范圍;
(3)過原點O任意作兩條互相垂直的直線與橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)相交于P,S,R,Q四點,設原點O到四邊形PQSR的一邊距離為d,試求d=1時a,b滿足的條件.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知點P是圓F1(x+
3
)2+y2=16
上任意一點,點F2與點F1關于原點對稱.線段PF2的中垂線與PF1交于M點.
(1)求點M的軌跡C的方程;
(2)設軌跡C與x軸的兩個左右交點分別為A,B,點K是軌跡C上異于A,B的任意一點,KH⊥x軸,H為垂足,延長HK到點Q使得HK=KQ,連接AQ延長交過B且垂直于x軸的直線l于點D,N為DB的中點.試判斷直線QN與以AB為直徑的圓O的位置關系.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知直線l:y=3x+2過拋物線y=ax2(a>0)的焦點.
(1)求拋物線方程;
(2)設拋物線的一條切線l1,若l1l,求切點坐標.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,O為坐標原點,直線l在x軸和y軸上的截距分別是a和b(a>0,b≠0),且交拋物線y2=2px(p>0)于M(x1,y1),N(x2,y2)兩點.
(1)寫出直線l的截距式方程;
(2)證明:
1
y1
+
1
y2
=
1
b
;
(3)當a=2p時,求∠MON的大。

查看答案和解析>>

科目: 來源:不詳 題型:解答題

橢圓E的中心在原點O,焦點在x軸上,離心率e=
2
3
,過點C(-1,0)的直線l交橢圓于A、B兩點,且滿足:
CA
BC
(λ≥2).
(1)若λ為常數(shù),試用直線l的斜率k(k≠0)表示三角形OAB的面積;
(2)若λ為常數(shù),當三角形OAB的面積取得最大值時,求橢圓E的方程;
(3)若λ變化,且λ=k2+1,試問:實數(shù)λ和直線l的斜率k(k∈R)分別為何值時,橢圓E的短半軸長取得最大值?并求出此時的橢圓方程.

查看答案和解析>>

同步練習冊答案