科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:解答題
設(shè)橢圓M:=1(a>)的右焦點(diǎn)為F1,直線l:x=與x軸交于點(diǎn)A,若1=2 (其中O為坐標(biāo)原點(diǎn)).
(1)求橢圓M的方程;
(2)設(shè)P是橢圓M上的任意一點(diǎn),EF為圓N:x2+(y-2)2=1的任意一條直徑(E,F為直徑的兩個(gè)端點(diǎn)),求·的最大值.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:選擇題
數(shù)列{an}的通項(xiàng)公式an=,若{an}前n項(xiàng)和為24,則n為( ).
A.25 B.576 C.624 D.625
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:選擇題
在等差數(shù)列{an}中,a1=142,d=-2,從第一項(xiàng)起,每隔兩項(xiàng)取出一項(xiàng),構(gòu)成新的數(shù)列{bn},則此數(shù)列的前n項(xiàng)和Sn取得最大值時(shí)n的值是( ).
A.23 B.24 C.25 D.26
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:選擇題
已知各項(xiàng)都為正的等比數(shù)列{an}滿足a7=a6+2a5,存在兩項(xiàng)am,an使得=4a1,則的最小值為( ).
A. B. C. D.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:選擇題
已知首項(xiàng)為正數(shù)的等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1 006和a1 007是方程x2-2 012x-2 011=0的兩根,則使Sn>0成立的正整數(shù)n的最大值是( ).
A.1006 B.1007 C.2011 D.2012
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=cos x(x∈(0,2π))有兩個(gè)不同的零點(diǎn)x1,x2,方程f(x)=m有兩個(gè)不同的實(shí)根x3,x4.若把這四個(gè)數(shù)按從小到大排列構(gòu)成等差數(shù)列,則實(shí)數(shù)m的值為( ).
A.- B. C. D.-
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:填空題
在正項(xiàng)數(shù)列{an}中,a1=2,an+1=2an+3×5n,則數(shù)列{an}的通項(xiàng)公式為________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:填空題
觀察下列等式
12=1
12-22=-3
12-22+32=6
12-22+32-42=-10
……
照此規(guī)律,第n個(gè)等式可為________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:填空題
設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若 (n∈N*)是非零常數(shù),則稱該數(shù)列為“和等比數(shù)列”;若數(shù)列{cn}是首項(xiàng)為2,公差為d(d≠0)的等差數(shù)列,且數(shù)列{cn}是“和等比數(shù)列”,則d=________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:解答題
正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn滿足:-(n2+n-1)Sn-(n2+n)=0.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bn=,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:對(duì)于任意的n∈N*,都有Tn<.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com