科目: 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第一章第3課時練習卷(解析版) 題型:填空題
在命題p的四種形式的命題(原命題、逆命題、否命題、逆否命題)中,正確命題的個數(shù)記為f(p),已知命題p:“若兩條直線l1:a1x+b1y+c1=0,l2:a2x+b2y+c2=0平行,則a1b2-a2b1=0”.那么f(p)=________.
查看答案和解析>>
科目: 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第一章第3課時練習卷(解析版) 題型:解答題
設(shè)命題p:關(guān)于x的不等式2|x-2|<a的解集為?;命題q:函數(shù)y=lg(ax2-x+a)的值域是R.如果命題p和q有且僅有一個正確,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第一章第3課時練習卷(解析版) 題型:解答題
設(shè)數(shù)列{an}、{bn}、{cn}滿足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),求證:{an}為等差數(shù)列的充分必要條件是{cn}為等差數(shù)列且bn≤bn+1(n=1,2,3,…).
查看答案和解析>>
科目: 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第七章第1課時練習卷(解析版) 題型:填空題
觀察下列等式:
+2=4;×2=4;+3=;×3=;+4=;×4=;…,根據(jù)這些等式反映的結(jié)果,可以得出一個關(guān)于自然數(shù)n的等式,這個等式可以表示為______________________.
查看答案和解析>>
科目: 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第七章第1課時練習卷(解析版) 題型:解答題
在各項為正的數(shù)列{an}中,數(shù)列的前n項和Sn滿足Sn=.
(1) 求a1,a2,a3;
(2) 由(1)猜想數(shù)列{an}的通項公式;
(3) 求Sn.
查看答案和解析>>
科目: 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第七章第1課時練習卷(解析版) 題型:填空題
已知數(shù)列{an}滿足a1=2,an+1= (n∈N*),則a3=________,a1·a2·a3·…·a2007=________.
查看答案和解析>>
科目: 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第七章第1課時練習卷(解析版) 題型:填空題
現(xiàn)有一個關(guān)于平面圖形的命題:如圖所示,同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為.類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為________.
查看答案和解析>>
科目: 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第七章第1課時練習卷(解析版) 題型:解答題
已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點對稱的兩個點,點P為橢圓上任意一點,當直線PM、PN的斜率都存在,并記為kPM、kPN,那么kPM與kPN之積是與點P位置無關(guān)的定值.試對雙曲線=1寫出具有類似特性的性質(zhì),并加以證明.
查看答案和解析>>
科目: 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第七章第1課時練習卷(解析版) 題型:解答題
設(shè)同時滿足條件:①≤bn+1(n∈N*);②bn≤M(n∈N*,M是與n無關(guān)的常數(shù))的無窮數(shù)列{bn}叫“特界” 數(shù)列.
(1) 若數(shù)列{an}為等差數(shù)列,Sn是其前n項和,a3=4,S3=18,求Sn;
(2) 判斷(1)中的數(shù)列{Sn}是否為“特界” 數(shù)列,并說明理由.
查看答案和解析>>
科目: 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第七章第1課時練習卷(解析版) 題型:解答題
設(shè)數(shù)列滿足a1=0且- = 1.
(1) 求的通項公式;
(2) 設(shè)bn=,記Sn=,證明:Sn<1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com