相關(guān)習(xí)題
 0  211042  211050  211056  211060  211066  211068  211072  211078  211080  211086  211092  211096  211098  211102  211108  211110  211116  211120  211122  211126  211128  211132  211134  211136  211137  211138  211140  211141  211142  211144  211146  211150  211152  211156  211158  211162  211168  211170  211176  211180  211182  211186  211192  211198  211200  211206  211210  211212  211218  211222  211228  211236  266669 

科目: 來源: 題型:

已知數(shù)列{an}中,a1=2,且an+1=3an+8n,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目: 來源: 題型:

國家標(biāo)準(zhǔn)規(guī)定:輕型汽車的氮氧化物排放量不得超過80mg/km.根據(jù)這個(gè)標(biāo)準(zhǔn),檢測單位從某出租車公司運(yùn)營的A、B兩種型號的出租車中分別抽取6輛,對其氮氧化物的排放量進(jìn)行檢測,檢測結(jié)果記錄如下:(單位:mg/km)
A 85 80 85 60 90 80
B 70 85 95 x 75 65
由于表格被污損,數(shù)據(jù)x看不清,統(tǒng)計(jì)員只記得A、B兩種出租車的氮氧化物排放量的平均值相等.
(1)求表格中x的值;
(2)從被檢測的6輛B種型號的出租車中任取3輛,記事件A:至少有兩輛出租車氮氧化物排放量未超過80mg/km,求事件A的概率.

查看答案和解析>>

科目: 來源: 題型:

從一批草莓中,隨機(jī)抽取50個(gè),其重量(單位:克)的頻數(shù)分布表如下:
分組(重量) [80,85) [85,90) [90,95) [95,100)
頻數(shù)(個(gè)) 10 50 20 15
(Ⅰ) 根據(jù)頻數(shù)分布表計(jì)算草莓的重量在[90,95)的頻率;
(Ⅱ) 用分層抽樣的方法從重量在[80,85)和[95,100)的草莓中共抽取5個(gè),其中重量在[80,85]的有幾個(gè)?
(Ⅲ) 在(Ⅱ)中抽出的5個(gè)草莓中,任取2個(gè),求重量在[80,85)和[95,100)中各有1個(gè)的概率.

查看答案和解析>>

科目: 來源: 題型:

已知x+2y=6,求2x+4y的最小值.

查看答案和解析>>

科目: 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分別是CC1,BC的中點(diǎn),點(diǎn)P在線段A1B1上,且
A1P
A 1B1

(1)證明:無論λ取何值,總有AM⊥PN;
(2)當(dāng)λ=
1
2
時(shí),求直線PN與平面ABC所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=(1+x)α的定義域是[-1,+∞),其中常數(shù)α>0.
(1)若α>1,求y=f(x)的過原點(diǎn)的切線方程.
(2)當(dāng)α>2時(shí),求最大實(shí)數(shù)A,使不等式f(x)>1+αx+Ax2對x>0恒成立.
(3)證明當(dāng)α>1時(shí),對任何n∈N*,有1<
1
n
n+1
k=2
((
k-1
k
α+
α
k
)<α.

查看答案和解析>>

科目: 來源: 題型:

求滿足下列條件的直線l的方程:
(1)傾斜角為
π
4
,與y軸的交點(diǎn)為(0,2);
(2)與坐標(biāo)軸的交點(diǎn)為(-5,0),(0,4).

查看答案和解析>>

科目: 來源: 題型:

在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥平面ABC,∠ACB=90°,D為BC中點(diǎn).
(Ⅰ)求證:BC⊥AA1;
(Ⅱ)求證:A1C∥平面AB1D;
(Ⅲ)若AC=AA1=BC=2,∠A1AC=60°,求三棱錐A1-ABC的體積.

查看答案和解析>>

科目: 來源: 題型:

某高校從參加今年自主招生考試的學(xué)生中,隨機(jī)抽取容量為50的學(xué)生成績樣本,得頻率分布表如下:
組號 分組 頻數(shù) 頻率
第一組 [230,235) 8 0.16
第二組 [235,240) 0.24
第三組 [240,245) 15
第四組 [245,250) 10 0.20
第五組 [250,255) 5 0.10
合計(jì) 50 1.00
(l)寫出表中①②位置的數(shù)據(jù);
(2)為了選拔出更優(yōu)秀的學(xué)生,高校決定在第三組、第四組、第五組中用分層抽樣法,抽取6名學(xué)生進(jìn)行第二輪考核,分別求第三、第四、第五各組參加考核的人數(shù);
(3)在(2)的前提下,高校決定在這6名學(xué)生中錄取2名學(xué)生,其中有ξ名第三組的,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

等差數(shù)列{an}中,a2=4,S6=42.
(1)求數(shù)列的通項(xiàng)公式an;
(2)設(shè)bn=
2
(n+1)an
,Tn=b1+b2+…+bn,求T10

查看答案和解析>>

同步練習(xí)冊答案