相關習題
 0  211205  211213  211219  211223  211229  211231  211235  211241  211243  211249  211255  211259  211261  211265  211271  211273  211279  211283  211285  211289  211291  211295  211297  211299  211300  211301  211303  211304  211305  211307  211309  211313  211315  211319  211321  211325  211331  211333  211339  211343  211345  211349  211355  211361  211363  211369  211373  211375  211381  211385  211391  211399  266669 

科目: 來源: 題型:

如圖,已知二面角α-MN-β的大小為60°,菱形ABCD在面β內,A、B兩點在棱MN上,∠BAD=60°,E是AB的中點,DO⊥面α,垂足為O.
(Ⅰ)證明:AB⊥平面ODE;
(Ⅱ)求異面直線BC與OD所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

如圖,三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD.
(Ⅰ)求證:CD⊥平面ABD;
(Ⅱ)若AB=BD=CD=1,M為AD中點,求三棱錐A-MBC的體積.

查看答案和解析>>

科目: 來源: 題型:

如圖,在四棱錐A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=
2

(Ⅰ)證明:DE⊥平面ACD;
(Ⅱ)求二面角B-AD-E的大。

查看答案和解析>>

科目: 來源: 題型:

如圖,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過A1、C、D三點的平面記為α,BB1與α的交點為Q.
(Ⅰ)證明:Q為BB1的中點;
(Ⅱ)求此四棱柱被平面α所分成上下兩部分的體積之比;
(Ⅲ)若AA1=4,CD=2,梯形ABCD的面積為6,求平面α與底面ABCD所成二面角的大。

查看答案和解析>>

科目: 來源: 題型:

四面體ABCD及其三視圖如圖所示,平行于棱AD,BC的平面分別交四面體的棱AB、BD、DC、CA于點E、F、G、H.
(Ⅰ)求四面體ABCD的體積;
(Ⅱ)證明:四邊形EFGH是矩形.

查看答案和解析>>

科目: 來源: 題型:

如圖,四棱錐P-ABCD,底面是以O為中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=
π
3
,M為BC上的一點,且BM=
1
2
,MP⊥AP.
(Ⅰ)求PO的長;
(Ⅱ)求二面角A-PM-C的正弦值.

查看答案和解析>>

科目: 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設AP=1,AD=
3
,三棱錐P-ABD的體積V=
3
4
,求A到平面PBC的距離.

查看答案和解析>>

科目: 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,側面BB1C1C為菱形,AB⊥B1C.
(Ⅰ)證明:AC=AB1
(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a+b=8,c=7,
CA
CB
=-
15
2

(1)求角C;
(2)若sin(α+C)=
1
3
(0<α<π),求sinα的值.

查看答案和解析>>

科目: 來源: 題型:

如圖1,四邊形ABCD為矩形,PD⊥平面ABCD,AB=1,BC=PC=2作如圖2折疊;折痕EF∥DC,其中點E,F(xiàn)分別在線段PD,PC上,沿EF折疊后點P疊在線段AD上的點記為M,并且MF⊥CF.
(1)證明:CF⊥平面MDF;
(2)求三棱錐M-CDE的體積.

查看答案和解析>>

同步練習冊答案