相關(guān)習(xí)題
 0  211922  211930  211936  211940  211946  211948  211952  211958  211960  211966  211972  211976  211978  211982  211988  211990  211996  212000  212002  212006  212008  212012  212014  212016  212017  212018  212020  212021  212022  212024  212026  212030  212032  212036  212038  212042  212048  212050  212056  212060  212062  212066  212072  212078  212080  212086  212090  212092  212098  212102  212108  212116  266669 

科目: 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)的和為Sn,且點(diǎn)(n+1,
1
Sn+n+3
)在函數(shù)y=
1
2x+1
的圖象上,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目: 來源: 題型:

已知復(fù)數(shù)z=(2+i)m2-
6m
1-i
-2(1-i),當(dāng)實(shí)數(shù)m取什么值時(shí),
(1)復(fù)數(shù)z是實(shí)數(shù);
(2)復(fù)數(shù)z是純虛數(shù);
(3)復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于第一、三象限的角平分線上.

查看答案和解析>>

科目: 來源: 題型:

已知△ABC的三個(gè)內(nèi)角A,B,C滿足:sin2(A+C)=
3
sinBcosB,cos﹙C-A﹚=-2cos2A.
(1)試判斷△ABC的形狀;
(2)已知函數(shù)f(x)=sinx-
3
cosx(x∈R),求f(A+
π
4
)的值.

查看答案和解析>>

科目: 來源: 題型:

已知z1=2+i,
.
z1
•z2=6+2i,
(1)求z2;
(2)若z=
z1
z2
,求z的模.

查看答案和解析>>

科目: 來源: 題型:

已知對(duì)于定義域?yàn)镈的函數(shù)y=f(x),若同時(shí)滿足下列條件:
①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域?yàn)閇a,b],
則把y=f(x)(x∈D)叫閉函數(shù).
(1)求閉函數(shù)y=x2,x∈[0,+∞)符合條件②的區(qū)間[a,b];
(2)是否存在函數(shù)f(x)=kx+b(k≠0)在R內(nèi)為閉函數(shù),且[1,2]為滿足條件②的區(qū)間?若存在,求出f(x),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:

某學(xué)校為了選拔學(xué)生參加“XX市中學(xué)生知識(shí)競(jìng)賽”,先在本校進(jìn)行選拔測(cè)試(滿分150分),若該校有100名學(xué)生參加選拔測(cè)試,并根據(jù)選拔測(cè)試成績(jī)作出如圖所示的頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖,估算這100名學(xué)生參加選拔測(cè)試的平均成績(jī);
(Ⅱ)該校推薦選拔測(cè)試成績(jī)?cè)?10以上的學(xué)生代表學(xué)校參加市知識(shí)競(jìng)賽,為了了解情況,在該校推薦參加市知識(shí)競(jìng)賽的學(xué)生中隨機(jī)抽取2人,求選取的兩人的選拔成績(jī)?cè)陬l率分布直方圖中處于不同組的概率.

查看答案和解析>>

科目: 來源: 題型:

已知圓C:x2+y2-2y-4=0,直線l:y=mx+1-m;
(1)求證:對(duì)任意m∈R,直線l與圓C總有兩個(gè)不同的交點(diǎn);
(2)求l與圓C交于A,B兩點(diǎn),若|AB|=
17
,求l的傾斜角.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=(x2-4)(x-a)(常數(shù)a∈R),若f(x)在(-∞,-2]和[2,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知sinα=
3
5
,α∈(0,
π
2
),cosβ=-
12
13
,β∈(
π
2
,π).求sin(α+β)的值.

查看答案和解析>>

科目: 來源: 題型:

四邊形ABCD是邊長(zhǎng)為1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1.
(1)以向量
AB
方向?yàn)閭?cè)視方向,畫出側(cè)視圖并標(biāo)明長(zhǎng)度(要求說明理由);
(2)求證:CN∥平面AMD;
(3)(理科做,文不做)求面AMN與面NBC所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案