相關習題
 0  212417  212425  212431  212435  212441  212443  212447  212453  212455  212461  212467  212471  212473  212477  212483  212485  212491  212495  212497  212501  212503  212507  212509  212511  212512  212513  212515  212516  212517  212519  212521  212525  212527  212531  212533  212537  212543  212545  212551  212555  212557  212561  212567  212573  212575  212581  212585  212587  212593  212597  212603  212611  266669 

科目: 來源: 題型:

某高中畢業(yè)學年,在高校自主招生期間,把學生的平時成績按“百分制”折算,排出前n名學生,并對這n名學生按成績分組,第一組[75,80),第二組[80,85),第三組[85,90),第四組[90,95),第五組[95,100],如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列,且第四組的人數(shù)為60.
(Ⅰ)請在圖中補全頻率分布直方圖;
(Ⅱ)若B大學決定在成績高的第4,5組中用分層抽樣的方法抽取6名學生,并且分成2組,每組3人進行面試,求95分(包括95分)以上的同學在同一個小組的概率.

查看答案和解析>>

科目: 來源: 題型:

已知一圓的圓心P在直線y=x上,且該圓與直線x+2y-1=0相切,截y軸所得弦長為2,求此圓方程.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
lnx
x
,x>6
e-x(x3+3x2+ax+b),x≤6
,其中a,b∈R,e為自然對數(shù)的底數(shù).
(Ⅰ)當a=b=-3時,函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當x≤6時,若函數(shù)h(x)=f(x)-e-x(x3+b-1)存在兩個相距大于2的極值點,求實數(shù)a的取值范圍;
(Ⅲ)若函數(shù)g(x)與函數(shù)f(x)的圖象關于y軸對稱,且函數(shù)g(x)在點(-6,m),(2,n)單調(diào)遞減,在(m,2),(n,+∞)單調(diào)遞增,試證明:f(n-m)
5
6
36

查看答案和解析>>

科目: 來源: 題型:

已知
a
=(sinx,cosx),
b
=(cosx,cosx),函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)函數(shù)f(x)的圖象可以由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=lnx-
a
x
,g(x)=ex(ax+1),其中a為常數(shù).
(Ⅰ)若y=f(x)在區(qū)間(1,+∞)上是單調(diào)增函數(shù),求a的取值范圍;
(Ⅱ)當g(x)在區(qū)間(1,2)上不是單調(diào)函數(shù)時,試求函數(shù)y=f(x)的零點個數(shù),并證明你的結論.

查看答案和解析>>

科目: 來源: 題型:

已知lg(3x)+lgy=lg(x+y+1),求:
(1)xy的最小值;
(2)x+y的最小值.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),過點A(-a,0),B(0,b)的直線的傾斜角為
π
6
,原點到該直線的距離為
2
2
,
(1)求橢圓的方程;
(2)是否存在實數(shù)k,直線y=kx+2交橢圓于Q,P兩點,以PQ為直徑的圓過點D(-1,0),若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

計算:
(1)
n
i=1
(1+
i
n
)2×
1
n

(2)
lim
n→∞
n
i=1
(1+
i
n
)2×
1
n

(3)
lim
n→∞
n
i=1
[(
i
n
)2+1]×
1
n

(4)
n
i=1
[(
i
n
)2+1]×
1
n

查看答案和解析>>

科目: 來源: 題型:

(文)在平面xoy內(nèi),不等式x2+y2≤4確定的平面區(qū)域為U,不等式組
x-2y≥0
x+3y≥0
確定的平面區(qū)域為V.
(1)定義橫、縱坐標均為非負整數(shù)的點為“非負整點”.在區(qū)域U中任取2個“非負整點”,求這些“非負整點”中恰好有1個“非負整點”落在區(qū)域V中的概率;
(2)在區(qū)域U中任取一個點,求這個點恰好在區(qū)域V內(nèi)的概率.

查看答案和解析>>

科目: 來源: 題型:

討論直線l1:ax+8y-a-4=0與直線l2:x+2ay-2a+1=0的位置關系.

查看答案和解析>>

同步練習冊答案