相關(guān)習(xí)題
 0  212496  212504  212510  212514  212520  212522  212526  212532  212534  212540  212546  212550  212552  212556  212562  212564  212570  212574  212576  212580  212582  212586  212588  212590  212591  212592  212594  212595  212596  212598  212600  212604  212606  212610  212612  212616  212622  212624  212630  212634  212636  212640  212646  212652  212654  212660  212664  212666  212672  212676  212682  212690  266669 

科目: 來源: 題型:

已知數(shù)列{an}的各項均為正數(shù),前n項和為Sn,且Sn=
an(an+1)
2
(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=-
2Sn
(n+1)•2n
,Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ex-bx.
(Ⅰ) 若曲線y=f(x)在點(0,f(0))處的切線平行于x軸,求實數(shù)b的值;
(Ⅱ)若?x∈(0,+∞),f(x)≥0成立,求實數(shù)b的取值范圍;
(Ⅲ)求證:
1
2
+
2
3
+…+
n
n+1
>n-ln(n+1)(n∈N*)

查看答案和解析>>

科目: 來源: 題型:

由于霧霾日趨嚴(yán)重,政府號召市民乘公交出行.但公交車的數(shù)量太多會造成資源的浪費,太少又難以滿足乘客需求.為此,某市公交公司在某站臺的60名候車乘客中進(jìn)行隨機抽樣,共抽取15人進(jìn)行調(diào)查反饋,將他們的候車時間作為樣本分成5組,如下表所示(單位:min):
組別 候車時間 人數(shù)
[0,5) 2
[5,10) 5
[10,15) 4
[15,20) 3
[20,25] 1
(Ⅰ)估計這60名乘客中候車時間少于10分鐘的人數(shù);
(Ⅱ)若從上表第三、四組的7人中選2人作進(jìn)一步的問卷調(diào)查,求抽到的兩人恰好來自不同組的概率.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)滿足對于任意實數(shù)x∈R,均有f(x)+2f(-x)=ex+2(
1
e
x+x成立.
(1)求f(x)的解析式并求f(x)的最小值;
(2)證明:(
1
n
)n+(
2
n
)n+
+(
n
n
)n
e
e-1
.(n∈N+

查看答案和解析>>

科目: 來源: 題型:

甲、乙、丙三人中要選一人去參加唱歌比賽,于是他們制定了一個規(guī)則,規(guī)則為:(如圖)以O(shè)為起點,再從A1,A2,A3,A4,A5,這5個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為X,若X>0就讓甲去;若X=0就讓乙去;若X<0就是丙去.
(Ⅰ)寫出數(shù)量積X的所有可能取值;
(Ⅱ)求甲、乙、丙三人去參加比賽的概率,并由求出的概率來說明這個規(guī)則公平嗎?

查看答案和解析>>

科目: 來源: 題型:

已知{an}是等差數(shù)列,首項a1=3,前n項和為Sn.令cn=(-1)nSn(n∈N*),{cn}的前20項和T20=330.?dāng)?shù)列{bn}是公比為q的等比數(shù)列,前n項和為Wn,且b1=2,q3=a9
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)證明:(3n+1)Wn≥nWn+1(n∈N*)

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x2+3x|x-a|,其中a∈R,設(shè)a≠0,函數(shù)f(x)在開區(qū)間(m,n)上既有最大值又有最小值,求m、n的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=lnx+(x-a)2-
a
2
,a∈R.
(Ⅰ)若函數(shù)f(x)在[
1
2
,2]
上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)求函數(shù)f(x)的極值點.
(Ⅲ)設(shè)x=m為函數(shù)f(x)的極小值點,f(x)的圖象與x軸交于A(x1,0),B(x2,0)(x1<x2)兩點,且0<x1<x2<m,AB中點為C(x0,0),求證:f′(x0)<0.

查看答案和解析>>

科目: 來源: 題型:

一個四棱錐S-ABCD的底面是邊長為a的正方形,側(cè)面展開圖如圖所示.SC為四棱錐中最長的側(cè)棱,點E為AB的中點
(1)畫出四棱錐S-ABCD的示意圖,求二面角E-SC-D的大小;
(2)求點D到平面SEC的距離.

查看答案和解析>>

科目: 來源: 題型:

某園藝師培育了兩種珍稀樹苗A與B,株數(shù)分別為8與12,現(xiàn)將這20株樹苗的高度編寫成如圖所示莖葉圖(單位:cm).若樹高在175cm以上(包括175cm)定義為“生長良好”,樹高在175cm以下(不包括175cm)定義為“非生長良好”,且只有“B生長良好”的才可以出售.
(1)對于這20株樹苗,如果用分層抽樣的方法從“生長良好”和“非生長良好”中共抽取5株,再從這5株中任選2株,那么至少有一株“生長良好”的概率是多少?
(2)若從所有“生長良好”中選2株,求所選中的樹苗都能出售的概率.

查看答案和解析>>

同步練習(xí)冊答案