相關(guān)習(xí)題
 0  234174  234182  234188  234192  234198  234200  234204  234210  234212  234218  234224  234228  234230  234234  234240  234242  234248  234252  234254  234258  234260  234264  234266  234268  234269  234270  234272  234273  234274  234276  234278  234282  234284  234288  234290  234294  234300  234302  234308  234312  234314  234318  234324  234330  234332  234338  234342  234344  234350  234354  234360  234368  266669 

科目: 來源: 題型:解答題

19.已知點P(x,y)是圓x2+y2=2y上的動點,
(1)求z=2x+y的取值范圍; 
(2)若x+y+a≥0恒成立,求實數(shù)a的取值范圍.
(3)求x2+y2-16x+4y的最大值,最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

18.求下列各式的值
(1)0.001${\;}^{-\frac{1}{3}}$-($\frac{7}{8}$)0+16${\;}^{\frac{3}{4}}$+($\sqrt{2}$•$\root{3}{3}$)6
(2)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{4}lg16}$        
(3)設(shè)x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求x+x-1的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.設(shè)集合A={x|x2-1>0},B={x|log2x>0},則A∩B=( 。
A.{x|x>0}B.{x|x>1}C.{x|x<-1}D.{x|x<-1或x>1}

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知f(x)=log4(4x+1)+kx,k∈R的圖象關(guān)于y軸對稱.
(1)求實數(shù)k的值;
(2)若關(guān)于x的方程log4(4x+1)-$\frac{1}{2}$x=$\frac{1}{2}$x+a無實根,求a的取值范圍;
(3)若函數(shù)h(x)=4${\;}^{f(x)+\frac{1}{2}x}$+m•2x-1,x∈[0,log23],是否存在實數(shù)m,使得h(x)最小值為0?若存在求出m值,若不存在說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.若直角坐標(biāo)平面內(nèi)兩個不同點P、Q滿足條件:①P、Q都在y=f(x)上;②P、Q關(guān)于原點對稱.則稱點對(P,Q)是函數(shù)y=f(x)的一對“友好點對”(點對(P,Q)與(Q,P)看作同一對“友好點對”).已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x>0}\\{-{x}^{2}-4x,x≤0}\end{array}\right.$,則此函數(shù)的友好點對有( 。
A.0對B.1對C.2對D.3對

查看答案和解析>>

科目: 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=-cos2x-4t•sin$\frac{x}{2}$cos$\frac{x}{2}$+2t2-6t+2(x∈R),其中t∈R,將f(x)的最小值記為g(t)
 (1)求g(t)的表達式;
(2)當(dāng)-1<t<1時,要使關(guān)于t的方程g(t)=kt有且僅有一個實根,求實數(shù)k的范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+sin2x+a的最大值為1
(1)求出實數(shù)a的值,并指出當(dāng)x取何值時,f(x)取最大值1
(2)若方程f(x)=m在[0,$\frac{π}{2}$]上有兩個不同的實數(shù)解,求實數(shù)m的取值范圍及兩個實數(shù)解的和.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1
(1)求f(x)的單調(diào)增區(qū)間和對稱中心坐標(biāo);
(2)將函數(shù)f(x)的圖象向右平移m個單位,使函數(shù)關(guān)于點($\frac{π}{3}$,0)對稱,求m的最小正值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上的點縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的$\frac{1}{2}$,再將所得的圖象向右平移$\frac{π}{12}$個單位,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的解析式.

查看答案和解析>>

科目: 來源: 題型:填空題

10.函數(shù)f(x)=4cos2$\frac{x}{2}$cos($\frac{π}{2}$-x)-2sinx-|lnx|的零點個數(shù)為2.

查看答案和解析>>

同步練習(xí)冊答案