相關(guān)習(xí)題
 0  234179  234187  234193  234197  234203  234205  234209  234215  234217  234223  234229  234233  234235  234239  234245  234247  234253  234257  234259  234263  234265  234269  234271  234273  234274  234275  234277  234278  234279  234281  234283  234287  234289  234293  234295  234299  234305  234307  234313  234317  234319  234323  234329  234335  234337  234343  234347  234349  234355  234359  234365  234373  266669 

科目: 來源: 題型:選擇題

9.兩圓x2+y2+4x-6y+12=0與x2+y2-2x-14y+15=0公共弦所在直線的方程是(  )
A.x-3y+1=0B.6x+2y-1=0C.6x+8y-3=0D.3x-y+5=0

查看答案和解析>>

科目: 來源: 題型:解答題

8.求經(jīng)過點(diǎn)A(0,-1),與直線x+y-1=0相切,且圓心在直線y=-2x上的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的導(dǎo)函數(shù).
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范圍;
(2)解關(guān)于x的方程f(x)=|f′(x)|.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.下列函數(shù)中,在區(qū)間(-1,1)上為減函數(shù)的是( 。
A.y=ln(x+1)B.y=2-xC.y=$\frac{1}{1-x}$D.y=cosx

查看答案和解析>>

科目: 來源: 題型:解答題

5.(Ⅰ) 計(jì)算:2${\;}^{-lo{g}_{2}4}$-($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$+lg$\frac{1}{100}$+($\sqrt{2}$-1)lg1+(lg5)2+lg2•lg50
(Ⅱ)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{x+{x}^{-1}-3}$的值.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知f(x)是定義在R上的偶函數(shù),且當(dāng)x>0時(shí),f(x)=lg$\frac{{2}^{x}}{{2}^{x}+1}$,若對任意實(shí)數(shù)t∈[$\frac{1}{2}$,2],都有f(t+a)-f(t-1)≥0恒成立,則實(shí)數(shù)a的取值范圍[0,+∞)∪(-∞,-3]∪{-1}.

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知函數(shù)f(x)=loga(x-1)+4(a>0且a≠1)恒過定點(diǎn)P,若點(diǎn)P也在冪函數(shù)g(x)的圖象上,則g(3)=9.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知函數(shù)f(x)=a|x-b|(a>0,a≠1),則對任意的非零實(shí)數(shù)a,b,m,n,p,關(guān)于x的方程m[f(x)]2+nf(x)+p=0的解集都不可能是( 。
A.{1,3}B.{1,4}C.{1,3,4}D.{1,2,3,4}

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知函數(shù)f(x)=lnx+2x+x-1,若f(x2-4)<2,則實(shí)數(shù)x的取值范圍是(  )
A.(-2,2)B.(2,$\sqrt{5}$)C.(-$\sqrt{5}$,-2)D.(-$\sqrt{5}$,-2)∪(2,$\sqrt{5}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知f(x)=$\left\{\begin{array}{l}{(2a-1)x+3a,x<1}\\{{a}^{x},x≥1}\end{array}\right.$滿足對任意x1≠x2都有(x1-x2)•(f(x1)-f(x2))<0成立,那么a的取值范圍是( 。
A.(0,1)B.(0,$\frac{1}{2}$)C.[$\frac{1}{4}$,1)D.[$\frac{1}{4}$,$\frac{1}{2}$)

查看答案和解析>>

同步練習(xí)冊答案