相關習題
 0  234392  234400  234406  234410  234416  234418  234422  234428  234430  234436  234442  234446  234448  234452  234458  234460  234466  234470  234472  234476  234478  234482  234484  234486  234487  234488  234490  234491  234492  234494  234496  234500  234502  234506  234508  234512  234518  234520  234526  234530  234532  234536  234542  234548  234550  234556  234560  234562  234568  234572  234578  234586  266669 

科目: 來源: 題型:選擇題

17.等差數(shù)列{an}中,Sn是其前n項和,a1=-9,$\frac{S_9}{9}-\frac{S_7}{7}$=2,則S10=( 。
A.0B.-9C.10D.-10

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知f(x)滿足對?x∈R,f(-x)+f(x)=0,且x≥0時,f(x)=ex+m(m為常數(shù)),則f(-ln5)的值為(  )
A.4B.-4C.6D.-6

查看答案和解析>>

科目: 來源: 題型:選擇題

15.復數(shù)z滿足$z=\frac{2-i}{1-i}$,則z對應的點位于復平面的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知f(x)=sinx-cosx,x∈[0,+∞).
(1)證明:$sinx-f(x)≥1-\frac{x^2}{2}$;
(2)證明:當a≥1時,f(x)≤eax-2.

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,△ABC為正三角形,AB⊥AD,AC⊥CD,PC=$\sqrt{2}PA=\sqrt{2}$AC,平面PAC⊥平面ABCD.
(1)點E在棱PC上,試確定點E的位置,使得PD⊥平面ABE;
(2)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=ex-ax,a>0.
(1)記f(x)的極小值為g(a),求g(a)的最大值;
(2)若對任意實數(shù)x恒有f(x)≥0,求f(a)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.在如圖所示的三棱錐ABC-A1B1C1中,AA1⊥底面ABC,D,E分別是BC,A1B1的中點.
(1)求證:DE∥平面ACC1A1;
(2)若AB⊥BC,AB=BC,∠ACB1=60°,求直線BC與平面AB1C所成角的正切值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,且對任意正整數(shù)n,都有an=$\frac{3}{4}{S_n}$+2成立.
(1)記bn=log2an,求數(shù)列{bn}的通項公式;
(2)設cn=$\frac{1}{{{b_n}{b_{n+1}}}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知函數(shù)f(x)=-f'(0)ex+2x+3,點P為曲線y=f(x)在點(0,f(0))處的切線l上的一點,點Q在曲線$y=\frac{x}{e^x}$上,則|PQ|的最小值為$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知定義在R上的單調函數(shù)f(x)滿足對任意的x1,x2,都有f(x1+x2)=f(x1)+f(x2)成立.若正實數(shù)a,b滿足f(a)+f(2b-1)=0,則$\frac{1}{a}+\frac{2}$的最小值為9.

查看答案和解析>>

同步練習冊答案