相關(guān)習(xí)題
 0  234832  234840  234846  234850  234856  234858  234862  234868  234870  234876  234882  234886  234888  234892  234898  234900  234906  234910  234912  234916  234918  234922  234924  234926  234927  234928  234930  234931  234932  234934  234936  234940  234942  234946  234948  234952  234958  234960  234966  234970  234972  234976  234982  234988  234990  234996  235000  235002  235008  235012  235018  235026  266669 

科目: 來源: 題型:填空題

4.在向南方雪災(zāi)受災(zāi)地區(qū)的捐款活動(dòng)中,某慈善組織收到一筆10000元的匿名捐款,該組織經(jīng)過調(diào)查,發(fā)現(xiàn)是甲、乙、丙、丁四個(gè)人當(dāng)中的某一個(gè)捐的.慈善組織成員對(duì)他們進(jìn)行求證時(shí),發(fā)現(xiàn)他們的說法互相矛盾.
甲說:對(duì)不起,這錢不是我捐的
乙說:我估計(jì)這錢肯定是丁捐的
丙說:乙的收入最高,肯定是乙捐的
丁說:乙的說法沒有任何根據(jù)
假定四人中只有一個(gè)說了真話,那么真正的捐款者是甲(僅一人).

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為$\frac{1}{2}$,其一個(gè)頂點(diǎn)為拋物線x2=-4$\sqrt{3}$y的焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)P(2,1)的直線l與橢圓C在第一象限相切于點(diǎn)M,求直線l的方程和點(diǎn)M的坐標(biāo);
(3)是否存在過點(diǎn)P(2,1)的直線l1與橢圓C相交于不同的兩點(diǎn)A,B,且滿足$\overrightarrow{PA}$•$\overrightarrow{PB}$=${\overrightarrow{PM}^2}$?若存在,求出直線l1的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

2.在三棱錐P-ABC中,△PBC和△PAC是邊長為$\sqrt{2}$的等邊三角形,AB=2,D是AB中點(diǎn).
(1)在棱PA上求一點(diǎn)M,使得DM∥面PBC;
(2)求證:面PAB⊥面ABC;
(3)求二面角P-BC-A的正弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.在△ABC中,若sin2A+sin2B=2sin2C,則角C為( 。
A.鈍角B.直角C.銳角D.60°

查看答案和解析>>

科目: 來源: 題型:填空題

20.若tanθ=$\sqrt{3}$,則$\frac{sin2θ}{1+cos2θ}$=$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.直線l過點(diǎn)P(-1,2),且傾斜角為45°,則直線l的方程為( 。
A.x-y+1=0B.x-y-1=0C.x-y-3=0D.x-y+3=0

查看答案和解析>>

科目: 來源: 題型:選擇題

18.在同一坐標(biāo)系中,函數(shù)y=sinx,x∈[0,2π]與y=sinx,x∈[2π,4π]的圖象( 。
A.重合B.形狀相同,位置不同
C.關(guān)于y軸對(duì)稱D.形狀不同,位置不同

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知正方體ABCD-A1B1C1D1棱長為1,E、F為線段B1D1的兩個(gè)動(dòng)點(diǎn),且EF=$\frac{\sqrt{2}}{2}$,給出下列四個(gè)命題:
①AC⊥BE;
②EF∥平面ABCD;
③點(diǎn)B到平面AEF的距離為定值;
④異面直線AE與BF所成的角為定值.
其中真命題的個(gè)數(shù)為( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè).

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)為A(-1,0)、B(4,0)、C(0,c).
(1)若$\overrightarrow{AC}$⊥$\overrightarrow{BC}$,求c的值;
(2)當(dāng)c滿足(1)問題的結(jié)論時(shí),求△ABC的重心坐標(biāo)G(x,y).

查看答案和解析>>

科目: 來源: 題型:解答題

15.某苗木公司要為一小區(qū)種植3棵景觀樹,每棵樹的成本為1000元,這種樹的成活率為$\frac{2}{3}$,有甲、乙兩種方案如下;
甲方案:若第一年種植后全部成活,小區(qū)全額付款8000元;若第一年成活率不足$\frac{1}{2}$,終止合作,小區(qū)不付任何款項(xiàng);若成活率超過$\frac{1}{2}$,但沒有全成活,第二年公司將對(duì)沒有成活的樹補(bǔ)種,若補(bǔ)種的樹全部成活,小區(qū)付款8000元,否則終止合作,小區(qū)付給公司2000元.
乙方案:只種樹不保證成活,每棵樹小區(qū)付給公司1300元.
(1)若實(shí)行甲方案,求小區(qū)給苗木公司付款的概率;
(2)公司為獲得更大利潤,應(yīng)選擇哪種方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案