相關(guān)習(xí)題
 0  234848  234856  234862  234866  234872  234874  234878  234884  234886  234892  234898  234902  234904  234908  234914  234916  234922  234926  234928  234932  234934  234938  234940  234942  234943  234944  234946  234947  234948  234950  234952  234956  234958  234962  234964  234968  234974  234976  234982  234986  234988  234992  234998  235004  235006  235012  235016  235018  235024  235028  235034  235042  266669 

科目: 來源: 題型:解答題

4.已知圓C:x2+y2+Dx+Ey+3=0關(guān)于直線x+y-1=0對稱,圓心在第二象限,半徑為$\sqrt{2}$.
(1)求圓C的方程;
(2)是否存在斜率為2的直線l,l截圓C所得的弦為AB,且以AB為直徑的圓過原點,若存在,則求出l的方程,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知圓C:x2+y2-4x-6y+9=0及直線l:2mx-3my+x-y-1=0(m∈R)
(1)證明:不論m取何值,直線l與圓C恒相交;
(2)求直線l被圓C截得的弦長最短時的直線方程.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=(1-x)ex
(1)證明:當(dāng)x>0時,f(x)<f(-x);
(2)若方程f(x)=a(1+x2)有兩個不相等的實根x1,x2,求實數(shù)a的取值范圍,并證明:x1+x2<0.

查看答案和解析>>

科目: 來源: 題型:解答題

1.對于兩個定義域相同的函數(shù)f(x),g(x),若存在實數(shù)m,n使h(x)=mf(x)+ng(x),則稱函數(shù)h(x)是由“基函數(shù)f(x),g(x)”生成的.
(Ⅰ)若h(x)=2x2+3x+1由函數(shù)f(x)=x2+ax,g(x)=x+b生成,$b∈[\frac{1}{2},\;1]$,求a+2b的取值范圍;
(Ⅱ)試?yán)谩盎瘮?shù)$f(x)={log_4}({4^x}+1),g(x)=x-1$”生成一個函數(shù)h(x),使之滿足下列條件:
①是偶函數(shù);
②有最小值1.
求h(x)的解析式.

查看答案和解析>>

科目: 來源: 題型:填空題

20.設(shè)G為△ABC的重心,a,b,c分別為角A,B,C的對邊,若35a$\overrightarrow{GA}$+21b$\overrightarrow{GB}$+15c$\overrightarrow{GC}$=$\overrightarrow{0}$,則sinC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

19.設(shè)函數(shù)f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$在區(qū)間[-2015,2015]上的最大值與最小值之和為2.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=x2+|x+1-a|,其中a為實常數(shù).
(Ⅰ)若a=1,判斷f(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]上的單調(diào)性;
(Ⅱ)若存在x∈R,使不等式f(x)≤2|x-a|成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

17.設(shè)銳角三角形ABC的三內(nèi)角為A,B,C所對的邊分別為a,b,c,函數(shù)f(x)=cosxsin(x+$\frac{π}{6}$)-cos2x.
(Ⅰ)求f(A)的取值范圍;
(Ⅱ)若f(A)=$\frac{1}{4}$,△ABC的面積為$\frac{\sqrt{3}}{4}$,求$\overrightarrow{AB}$•$\overrightarrow{AC}$的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=4x2-4ax.
(1)若f(x)>1對任意的a∈[-1,1]恒成立,求x的取值范圍;
(2)若對任意的x∈[0,1],|f(x)|≤1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,設(shè)圓C的方程為(x-a)2+(y-2a+4)2=1.
(Ⅰ)若圓C經(jīng)過A(3,3)與B(4,2)兩點,求實數(shù)a的值;
(Ⅱ)點P(0,3),若圓C上存在點M,使|MP|=2|MO|,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案