相關(guān)習(xí)題
 0  235444  235452  235458  235462  235468  235470  235474  235480  235482  235488  235494  235498  235500  235504  235510  235512  235518  235522  235524  235528  235530  235534  235536  235538  235539  235540  235542  235543  235544  235546  235548  235552  235554  235558  235560  235564  235570  235572  235578  235582  235584  235588  235594  235600  235602  235608  235612  235614  235620  235624  235630  235638  266669 

科目: 來(lái)源: 題型:解答題

19.已知α是第二象限角,且cos(α+π)=$\frac{3}{13}$.
(1)求tanα的值;
(2)求sin(α-$\frac{π}{2}$)•sin(-α-π)的值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)是偶函數(shù),且f(x-2)在[0,2]上是減函數(shù),則(  )
A.f(0)<f(-1)<f(2)B.f(-1)<f(0)<f(2)C.f(-1)<f(2)<f(0)D.f(2)<f(0)<f(-1)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

17.已知拋物線(xiàn)x2=2px(p>0)經(jīng)過(guò)點(diǎn)線(xiàn)$M({\frac{1}{2},2})$,則它的準(zhǔn)線(xiàn)方程為(  )
A.$y=-\frac{1}{32}$B.BC.CD.D

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.為了了解800名高三學(xué)生是否喜歡背誦詩(shī)詞,從中抽取一個(gè)容量為20的樣本,若采用系統(tǒng)抽樣,則分段的間隔k為(  )
A.50B.60C.30D.40

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}sin\frac{x}{4}π,x>0\\ f({x+2}),x≤0\end{array}$,則f(-5)的值為( 。
A.0B.$\frac{{\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.集合A={0,2,4,6},B={x||x-1|≤2},則A∩B是( 。
A.{0,2}B.{2,4}C.{4,6}D.{0,2,4}

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.在面積為1的等邊三角形ABC內(nèi)任取一點(diǎn),使三角形△ABP,△ACP,△BCP的面積都小于$\frac{1}{2}$的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x2+4x+a-5,g(x)=m•4x-1-2m+7.
(1)若函數(shù)f(x)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=0時(shí),若對(duì)任意的x1∈[1,2],總存在x2∈[1,2],使f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍;
(3)若y=f(x)(x∈[t,2])的置于為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長(zhǎng)度為6-4t?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(注:區(qū)間[p,q]的長(zhǎng)度q-p)

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

11.將函數(shù)f(x)=sinωx(ω>0)的圖象向右平移$\frac{π}{4}$個(gè)單位后得到函數(shù)g(x)的圖象,若對(duì)于滿(mǎn)足|f(x1)-g(x2)|=2的x1,x2,有|x1-x2|min=$\frac{π}{4}$,則f($\frac{π}{4}$)的值為1.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.已知數(shù)列{an}滿(mǎn)足a1=$\frac{2}{5}$,an+1=$\frac{2{a}_{n}}{3-{a}_{n}}$,n∈N*
(1)求a2;
(2)求{$\frac{1}{{a}_{n}}$}的通項(xiàng)公式;
(3)設(shè){an}的前n項(xiàng)和為Sn,求證:$\frac{6}{5}$(1-($\frac{2}{3}$)n)≤Sn<$\frac{21}{13}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案