相關(guān)習題
 0  256607  256615  256621  256625  256631  256633  256637  256643  256645  256651  256657  256661  256663  256667  256673  256675  256681  256685  256687  256691  256693  256697  256699  256701  256702  256703  256705  256706  256707  256709  256711  256715  256717  256721  256723  256727  256733  256735  256741  256745  256747  256751  256757  256763  256765  256771  256775  256777  256783  256787  256793  256801  266669 

科目: 來源: 題型:

【題目】已知函數(shù)有兩個不同的零點.

(Ⅰ)求的取值范圍;

(Ⅱ)記兩個零點分別為,且,已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知AB、C是△ABC的三個內(nèi)角,向量m=(-1, ),n=(cosA,sinA),且m·n=1.

(1)求角A;

(2)若=-3,求tanC.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知正三棱柱中,,點的中點,點在線段上.

)當時,求證;

)是否存在點,使二面角等于60°?若存在,求的長;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)全集UR,集合A{x|1x4},B{x|2ax3a}

(1)a=-2,求BABUA;

(2)BA,求實數(shù)a取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】小明同學在寒假社會實踐活動中,對白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關(guān)系進行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫)與該奶茶店的品牌飲料銷量(杯),得到如表數(shù)據(jù):

日期

1月11號

1月12號

1月13號

1月14號

1月15號

平均氣溫

9

10

12

11

8

銷量(杯)

23

25

30

26

21

(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;

(2)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程式

(3)根據(jù)(2)所得的線性回歸方程,若天氣預(yù)報1月16號的白天平均氣溫為,請預(yù)測該奶茶店這種飲料的銷量.

(參考公式:

查看答案和解析>>

科目: 來源: 題型:

【題目】集合A是由且備下列性質(zhì)的函數(shù)組成的:

①函數(shù)的定義域是;②函數(shù)的值域是;

③函數(shù)上是增函數(shù),試分別探究下列兩小題:

(1)判斷函數(shù)數(shù)是否屬于集合A?并簡要說明理由;

(2)對于(1)中你認為屬于集合A的函數(shù),不等式

是否對于任意的恒成立?若成立,請給出證明;若不成立,請說明理由。

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)記函數(shù)的兩個零點分別為,且.已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的右焦點,橢圓的左,右頂點分別為.過點的直線與橢圓交于兩點,且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線兩側(cè)的動點,且滿足,試問直線的斜率是否為定值,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,已知AB⊥側(cè)面BB1C1CABBC1,BB12,∠BCC160°

)求證:C1B⊥平面ABC;

)設(shè)0≤λ≤1),且平面AB1EBB1E所成的銳二面角的大小為30°,試求λ的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修:坐標系與參數(shù)方程

已知曲線C的極坐標方程為ρ﹣4cosθ+3ρsin2θ=0,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l過點M1,0),傾斜角為

)求曲線C的直角坐標方程與直線l的參數(shù)方程;

)若曲線C經(jīng)過伸縮變換后得到曲線C′,且直線l與曲線C′交于A,B兩點,求|MA|+|MB|

查看答案和解析>>

同步練習冊答案