科目: 來源: 題型:
【題目】已知向量 =(sinx,﹣1), =(2cosx,1).
(1)若 ∥ ,求tanx的值;
(2)若 ⊥ ,又x∈[π,2π],求sinx+cosx的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù) 的最小正周期為π,若其圖象向左平移 個單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象( )
A.關(guān)于點 對稱
B.關(guān)于點 對稱
C.關(guān)于直線 對稱
D.關(guān)于直線 對稱
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知中心在原點,焦點在軸上的橢圓的一個焦點為, 是橢圓上的一個點.
(1)求橢圓的標(biāo)準方程;
(2)設(shè)橢圓的上、下頂點分別為, ()是橢圓上異于的任意一點, 軸, 為垂足, 為線段中點,直線交直線于點, 為線段的中點,如果的面積為,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)過點A(2,0),B(0,1)兩點.
(1)求橢圓C的方程及離心率;
(2)設(shè)直線l與橢圓相交于不同的兩點A,B.已知點A的坐標(biāo)為(﹣a,0),點 Q(0,y0)在線段AB的垂直平分線上,且 =4,求y0的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱錐中, 底面, , , , 分別是, 的中點, 在上,且.
(1)求證: 平面;
(2)在線段上上是否存在點,使二面角
的大小為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)是空間兩條直線, 是空間兩個平面,則下列命題中不正確的是( )
A. 當(dāng)時,“”是“”的充要條件
B. 當(dāng)時,“”是“”的充分不必要條件
C. 當(dāng)時,“”是“”的必要不充分條件
D. 當(dāng)時,“”是“”的充分不必要條件
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖(1)所示,已知四邊形是由直角△和直角梯形拼接而成的,其中
.且點為線段的中點, , 現(xiàn)將△沿進行翻折,使得二面角
的大小為,得到圖形如圖(2)所示,連接,點分別在線段上.
(1)證明: ;
(2)若三棱錐的體積為四棱錐體積的,求點到平面的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注: )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com