相關(guān)習(xí)題
 0  257270  257278  257284  257288  257294  257296  257300  257306  257308  257314  257320  257324  257326  257330  257336  257338  257344  257348  257350  257354  257356  257360  257362  257364  257365  257366  257368  257369  257370  257372  257374  257378  257380  257384  257386  257390  257396  257398  257404  257408  257410  257414  257420  257426  257428  257434  257438  257440  257446  257450  257456  257464  266669 

科目: 來源: 題型:

【題目】已知向量 =(sinx,﹣1), =(2cosx,1).
(1)若 ,求tanx的值;
(2)若 ,又x∈[π,2π],求sinx+cosx的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù) 的最小正周期為π,若其圖象向左平移 個單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象(
A.關(guān)于點 對稱
B.關(guān)于點 對稱
C.關(guān)于直線 對稱
D.關(guān)于直線 對稱

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知中心在原點,焦點在軸上的橢圓的一個焦點為 是橢圓上的一個點.

(1)求橢圓的標(biāo)準方程;

(2)設(shè)橢圓的上、下頂點分別為 )是橢圓上異于的任意一點, 軸, 為垂足, 為線段中點,直線交直線于點, 為線段的中點,如果的面積為,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)設(shè),試討論單調(diào)性;

(2)設(shè),當(dāng)時,任意,存在,使,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知不等式對一切都成立,則的最小值是( )

A. B. C. D. 1

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)過點A(2,0),B(0,1)兩點.
(1)求橢圓C的方程及離心率;
(2)設(shè)直線l與橢圓相交于不同的兩點A,B.已知點A的坐標(biāo)為(﹣a,0),點 Q(0,y0)在線段AB的垂直平分線上,且 =4,求y0的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱錐中, 底面 , , 分別是, 的中點, 上,且

(1)求證: 平面;

(2)在線段上上是否存在點,使二面角

的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)是空間兩條直線, 是空間兩個平面,則下列命題中不正確的是( )

A. 當(dāng)時,“”是“”的充要條件

B. 當(dāng)時,“”是“”的充分不必要條件

C. 當(dāng)時,“”是“”的必要不充分條件

D. 當(dāng)時,“”是“”的充分不必要條件

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖(1)所示,已知四邊形是由直角△和直角梯形拼接而成的,其中

.且點為線段的中點, , 現(xiàn)將△沿進行翻折,使得二面角

的大小為,得到圖形如圖(2)所示,連接,點分別在線段上.

(1)證明: ;

(2)若三棱錐的體積為四棱錐體積的,求點到平面的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程

3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

同步練習(xí)冊答案