相關(guān)習(xí)題
 0  257521  257529  257535  257539  257545  257547  257551  257557  257559  257565  257571  257575  257577  257581  257587  257589  257595  257599  257601  257605  257607  257611  257613  257615  257616  257617  257619  257620  257621  257623  257625  257629  257631  257635  257637  257641  257647  257649  257655  257659  257661  257665  257671  257677  257679  257685  257689  257691  257697  257701  257707  257715  266669 

科目: 來(lái)源: 題型:

【題目】下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是(
A.y=|x|
B.y=3﹣x
C.y=
D.y=﹣x2+4

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè)函數(shù)y= 的圖象上存在兩點(diǎn)P,Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形(其中O為坐標(biāo)原點(diǎn)),且斜邊的中點(diǎn)恰好在y軸上,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè)直線x=t與函數(shù)f(x)=x2 , g(x)=lnx的圖象分別交于點(diǎn)M,N,則當(dāng)|MN|達(dá)到最小時(shí)t的值為

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)曲線在點(diǎn)處的切線方程為.

(1)求;

(2)若存在實(shí)數(shù),對(duì)任意的,都有,求整數(shù)的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且的離心率為.

(1)求的方程;

(2)過(guò)的頂點(diǎn)作兩條互相垂直的直線與橢圓分別相交于兩點(diǎn).若的角平分線方程為,求的面積及直線的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為, 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程與曲線的直角坐標(biāo)方程,并討論兩曲線公共點(diǎn)的個(gè)數(shù);

(2)若,求由兩曲線交點(diǎn)圍成的四邊形面積的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】定義實(shí)數(shù)a,b間的計(jì)算法則如下a△b=
(1)計(jì)算2△(3△1);
(2)對(duì)0<x<z<y的任意實(shí)數(shù)x,y,z,判斷x△(y△z)與(x△y)△z的大小,并說(shuō)明理由;
(3)寫(xiě)出函數(shù)y=(1△x)+(2△x),x∈R的解析式,作出該函數(shù)的圖象,并寫(xiě)出該函數(shù)單調(diào)遞增區(qū)間和值域(只需要寫(xiě)出結(jié)果).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)求證f(x)在(0,+∞)上遞增
(2)若f(x)在[m,n]上的值域是[m,n],求實(shí)數(shù)a的取值范圍
(3)當(dāng)f(x)≤2x在(0,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,g(x)=x2+2ax+1(a為正常數(shù)),且函數(shù)f(x)和g(x)的圖象與y軸的交點(diǎn)重合.
(1)求a實(shí)數(shù)的值
(2)若h(x)=f(x)+b (b為常數(shù))試討論函數(shù)h(x)的奇偶性;
(3)若關(guān)于x的不等式f(x)﹣2 >a有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之間,其生產(chǎn)的總成本y(萬(wàn)元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系式可近似地表示為
問(wèn):
(1)年產(chǎn)量為多少噸時(shí),每噸的平均成本最低?并求出最低成本?
(2)若每噸平均出廠價(jià)為16萬(wàn)元,則年產(chǎn)量為多少噸時(shí),可獲得最大利潤(rùn)?并求出最大利潤(rùn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案