相關(guān)習(xí)題
 0  258040  258048  258054  258058  258064  258066  258070  258076  258078  258084  258090  258094  258096  258100  258106  258108  258114  258118  258120  258124  258126  258130  258132  258134  258135  258136  258138  258139  258140  258142  258144  258148  258150  258154  258156  258160  258166  258168  258174  258178  258180  258184  258190  258196  258198  258204  258208  258210  258216  258220  258226  258234  266669 

科目: 來源: 題型:

【題目】函數(shù)f(x2)的定義域?yàn)椋ī?,1],則函數(shù)f(x﹣1)的定義域?yàn)椋?/span>
A.[2,10)
B.[1,10)
C.[1,2]
D.[0,2]

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中t為參數(shù)).現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(Ⅰ) 寫出直線的普通方程和曲線C 的直角坐標(biāo)方程;

(Ⅱ) 過點(diǎn)且與直線平行的直線交曲線C 兩點(diǎn),求.

查看答案和解析>>

科目: 來源: 題型:

【題目】通過隨機(jī)詢問110名性別不同的中學(xué)生是否愛好運(yùn)動(dòng),得到如下的列聯(lián)表:

總計(jì)

愛好

40

20

60

不愛好

20

30

50

總計(jì)

60

50

110

由K2= 得,K2= ≈7.8

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

參照附表,得到的正確結(jié)論是(
A.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好運(yùn)動(dòng)與性別有關(guān)”
B.有99%以上的把握認(rèn)為“愛好運(yùn)動(dòng)與性別有關(guān)”
C.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好運(yùn)動(dòng)與性別無關(guān)”
D.有99%以上的把握認(rèn)為“愛好運(yùn)動(dòng)與性別無關(guān)”

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)l,m是兩條不同直線,α是一個(gè)平面,則下列四個(gè)命題正確的是(
A.若l⊥m,mα,則l⊥α
B.若l∥α,m∥α,則l∥m
C.若l∥α,mα,則l∥m
D.若l⊥α,l∥m,則m⊥α

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)奇函數(shù)定義在上,其導(dǎo)函數(shù)為,當(dāng)時(shí), ,則不等式的解集為

A. B.

C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知△ABC的頂點(diǎn)A(5,1),AB邊上的中線CM所在直線方程為2x﹣y﹣5=0,∠B的平分線BN所在直線方程為x﹣2y﹣5=0.求:
(1)頂點(diǎn)B的坐標(biāo);
(2)直線BC的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求證:f(x)在[﹣3,﹣2]上是增函數(shù);
(2)求f(x)得最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,側(cè)棱PD⊥底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)求證:PA∥平面BDE;
(2)求證:PB⊥平面DEF.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),是否存在整數(shù),使不等式恒成立?若存在,求整數(shù)的值;若不存在,則說明理由;

(3)關(guān)于的方程上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)判斷f(x)在(0,+∞)的單調(diào)性;
(2)若x>0,證明:(ex﹣1)ln(x+1)>x2

查看答案和解析>>

同步練習(xí)冊答案