科目: 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求A到平面PBC的距離.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)雙曲線 的離心率e=2,右焦點(diǎn)為F(c,0),方程ax2+bx﹣c=0的兩個(gè)實(shí)根分別為x1和x2 , 則點(diǎn)P(x1 , x2) 滿足( )
A.必在圓x2+y2=2內(nèi)
B.必在圓x2+y2=2外
C.必在圓x2+y2=2上
D.以上三種情形都有可能
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,點(diǎn)P(0,﹣1)是橢圓C1: =1(a>b>0)的一個(gè)頂點(diǎn),C1的長(zhǎng)軸是圓C2:x2+y2=4的直徑,l1 , l2是過(guò)點(diǎn)P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A,B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時(shí)直線l1的方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)雙曲線的一個(gè)焦點(diǎn)為F,虛軸的一個(gè)端點(diǎn)為B,如果直線FB與該雙曲線的一條漸近線垂直,那么此雙曲線的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)的和為Sn , 且對(duì)任意的m,n∈N*,
都有(Sm+n+S1)2=4a2ma2n .
(1)求 的值;
(2)求證:{an}為等比數(shù)列;
(3)已知數(shù)列{cn},{dn}滿足|cn|=|dn|=an , p(p≥3)是給定的正整數(shù),數(shù)列{cn},{dn}的前p項(xiàng)的和分別為Tp , Rp , 且Tp=Rp , 求證:對(duì)任意正整數(shù)k(1≤k≤p),ck=dk .
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,已知拋物線y2=4x的焦點(diǎn)為F.過(guò)點(diǎn)P(2,0)的直線交拋物線于A(x1 , y1),B(x2 , y2)兩點(diǎn),直線AF,BF分別與拋物線交于點(diǎn)M,N.
(1)求y1y2的值;
(2)記直線MN的斜率為k1 , 直線AB的斜率為k2 . 證明: 為定值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】若P為橢圓 =1上任意一點(diǎn),F(xiàn)1 , F2為左、右焦點(diǎn),如圖所示.
(1)若PF1的中點(diǎn)為M,求證:|MO|=5﹣ |PF1|;
(2)若∠F1PF2=60°,求|PF1||PF2|之值;
(3)橢圓上是否存在點(diǎn)P,使 =0,若存在,求出P點(diǎn)的坐標(biāo),若不存在,試說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com