科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx﹣ax,g(x)=ex﹣3ax,其中a為實(shí)數(shù),若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(1,+∞)上有最小值,則a的取值范圍是( )
A.( ,+∞)
B.[ ,+∞)
C.(1,+∞)
D.[1,+∞)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,P是四邊形ABCD所在平面外的一點(diǎn),四邊形ABCD是∠DAB=60°且邊長(zhǎng)為a的菱形.側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD.
(1)若G為AD邊的中點(diǎn),求證:BG⊥平面PAD;
(2)求證:AD⊥PB.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=xf(x)+mx在區(qū)間(0,e]上的最大值為﹣3,求m的值;
(3)若x≥1時(shí),有不等式f(x)≥ 恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn)A(﹣1,0),B(1,0),直線AM與直線BM相交于點(diǎn)M,直線AM與直線BM的斜率分別記為kAM與kBM , 且kAMkBM=﹣2 (Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)過定點(diǎn)F(0,1)作直線PQ與曲線C交于P,Q兩點(diǎn),△OPQ的面積是否存在最大值?若存在,求出△OPQ面積的最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角梯形ABCD中,BC⊥DC , AE⊥DC , M , N分別是AD , BE的中點(diǎn),將三角形ADE沿AE折起,則下列說法正確的是(填序號(hào)).
①不論D折至何位置(不在平面ABC內(nèi)),都有MN∥平面DEC;②不論D折至何位置,都有MN⊥AE;③不論D折至何位置(不在平面ABC內(nèi)),都有MN∥AB;④在折起過程中,一定存在某個(gè)位置,使EC⊥AD.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求二面角B﹣DC﹣B1的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知A(-1,1),B(1,1),C(2, +1),
(1)求直線AB和AC的斜率.
(2)若點(diǎn)D在線段AB(包括端點(diǎn))上移動(dòng)時(shí),求直線CD的斜率的變化范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l1:(a-1)x+y+b=0,l2:ax+by-4=0,求滿足下列條件的a , b的值.
(1)l1⊥l2 , 且l1過點(diǎn)(1,1);
(2)l1∥l2 , 且l2在第一象限內(nèi)與兩坐標(biāo)軸圍成的三角形的面積為2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com