相關(guān)習(xí)題
 0  258727  258735  258741  258745  258751  258753  258757  258763  258765  258771  258777  258781  258783  258787  258793  258795  258801  258805  258807  258811  258813  258817  258819  258821  258822  258823  258825  258826  258827  258829  258831  258835  258837  258841  258843  258847  258853  258855  258861  258865  258867  258871  258877  258883  258885  258891  258895  258897  258903  258907  258913  258921  266669 

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=|2x+1|+|2x﹣a|.
(1)若f(x)的最小值為2,求a的值;
(2)若f(x)≤|2x﹣4|的解集包含[﹣2,﹣1],求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ.
(1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于M,N兩點(diǎn),點(diǎn)A(1,0),求 + 的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,甲、乙是邊長(zhǎng)為的兩塊正方形鋼板,現(xiàn)要將甲裁剪焊接成一個(gè)正四棱柱,將乙裁剪焊接成一個(gè)正四棱錐,使它們的全面積都等于一個(gè)正方形的面積(不計(jì)焊接縫的面積).

(1)將你的裁剪方法用虛線標(biāo)示在圖中,并作簡(jiǎn)要說明;

(2)試比較你所制作的正四棱柱與正四棱錐體積的大小,并證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知多面體的底面是邊長(zhǎng)為2的菱形, 底面, ,且

(1)證明:平面平面;

(2)若直線與平面所成的角為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=cos(x)cos(x),g(x)=sin 2x.

(1)求函數(shù)f(x)的最小正周期;

(2)求函數(shù)h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.

查看答案和解析>>

科目: 來源: 題型:

【題目】如下圖,某地一天從6時(shí)到14時(shí)的溫度變化曲線近似滿足函數(shù)yAsin(ωxφ)+b. (0 <φ < π)

(1)求這段時(shí)間的最大溫差;

(2)寫出這段曲線的函數(shù)解析式.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)g(x)= ,f(x)=g(x)﹣ax.
(1)求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=cos(2x),x∈R.

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;

(2)求函數(shù)f(x)在區(qū)間[-, ]上的最小值和最大值,并求出取得最值時(shí)x的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某電臺(tái)在因特網(wǎng)上就觀眾對(duì)某一節(jié)目的喜愛程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如下表:

很喜愛

喜愛

一般

不喜愛

2435

4567

3926

1072

電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見,打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)當(dāng)怎樣進(jìn)行抽樣?

查看答案和解析>>

科目: 來源: 題型:

【題目】在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)為Mf(x),定義為Mf(x)=f(x+1)﹣f(x).已知某服裝公司每天最多

生產(chǎn)100件.生產(chǎn)x件的收入函數(shù)為R(x)=300x﹣2x2(單位元),其成本函數(shù)為C(x)=50x+300(單位:元),利潤(rùn)等于收入與成本之差.

(1)求出利潤(rùn)函數(shù)p(x)及其邊際利潤(rùn)函數(shù)Mp(x);

(2)分別求利潤(rùn)函數(shù)p(x)及其邊際利潤(rùn)函數(shù)Mp(x)的最大值;

(3)你認(rèn)為本題中邊際利潤(rùn)函數(shù)Mp(x)最大值的實(shí)際意義是什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案