相關(guān)習(xí)題
 0  258781  258789  258795  258799  258805  258807  258811  258817  258819  258825  258831  258835  258837  258841  258847  258849  258855  258859  258861  258865  258867  258871  258873  258875  258876  258877  258879  258880  258881  258883  258885  258889  258891  258895  258897  258901  258907  258909  258915  258919  258921  258925  258931  258937  258939  258945  258949  258951  258957  258961  258967  258975  266669 

科目: 來源: 題型:

【題目】已知一個(gè)袋中裝有大小相同的4個(gè)紅球,3個(gè)白球,3個(gè)黃球.若任意取出2個(gè)球,則取出的2個(gè)球顏色相同的概率是;若有放回地任意取10次,每次取出一個(gè)球,每取到一個(gè)紅球得2分,取到其它球不得分,則得分?jǐn)?shù)X的方差為

查看答案和解析>>

科目: 來源: 題型:

【題目】ABC中,若sin A=2sin Bcos C,sin2A=sin2B+sin2C,試判斷ABC的形狀.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)x滿足(x﹣a)(x﹣3a)<0,其中a>0,命題q:實(shí)數(shù)x滿足 2<x≤3.
(1)若a=1,有p且q為真,求實(shí)數(shù)x的取值范圍.
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)= sin xcos x+cos2x+a;則f(x)的最小正周期為 , 若f(x)在區(qū)間[﹣ , ]上的最大值與最小值的和為 ,則實(shí)數(shù)a的值為

查看答案和解析>>

科目: 來源: 題型:

【題目】給出下列命題:
①定義在R上的函數(shù)f(x)滿足f(2)>f(1),則f(x)一定不是R上的減函數(shù);
②用反證法證明命題“若實(shí)數(shù)a,b,滿足a2+b2=0,則a,b都為0”時(shí),“假設(shè)命題的結(jié)論不成立”的敘述是“假設(shè)a,b都不為0”.
③把函數(shù)y=sin(2x+ )的圖象向右平移 個(gè)單位長度,所得到的圖象的函數(shù)解析式為y=sin2x.
④“a=0”是“函數(shù)f(x)=x3+ax2(x∈R)為奇函數(shù)”的充分不必要條件.
其中所有正確命題的序號為

查看答案和解析>>

科目: 來源: 題型:

【題目】已知f(x)是定義在R上的減函數(shù),其導(dǎo)函數(shù)f′(x)滿足 +x<1,則下列結(jié)論正確的是(
A.對于任意x∈R,f(x)<0
B.對于任意x∈R,f(x)>0
C.當(dāng)且僅當(dāng)x∈(﹣∞,1),f(x)<0
D.當(dāng)且僅當(dāng)x∈(1,+∞),f(x)>0

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

)求函數(shù)的定義域.

)判斷在定義域上的單調(diào)性,并用單調(diào)性定義證明你的結(jié)論.

)求函數(shù)的值域.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知雙曲線 =1(a>0,b>0)的左右焦點(diǎn)分別為F1 , F2 , |F1F2|=4,P是雙曲線右支上的一點(diǎn),F(xiàn)2P與y軸交于點(diǎn)A,△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,若|PQ|=1,則雙曲線的離心率是(
A.3
B.2
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】數(shù)列{an}滿足a1=2,an+1=an2+6an+6(n∈N×
(1)設(shè)Cn=log5(an+3),求證{Cn}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)bn= ,數(shù)列{bn}的前n項(xiàng)和為Tn , 求證:﹣ ≤Tn<﹣

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,設(shè)橢圓C1 =1(a>b>0),長軸的右端點(diǎn)與拋物線C2:y2=8x的焦點(diǎn)F重合,且橢圓C1的離心率是
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)過F作直線l交拋物線C2于A,B兩點(diǎn),過F且與直線l垂直的直線交橢圓C1于另一點(diǎn)C,求△ABC面積的最小值,以及取到最小值時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案