相關習題
 0  258895  258903  258909  258913  258919  258921  258925  258931  258933  258939  258945  258949  258951  258955  258961  258963  258969  258973  258975  258979  258981  258985  258987  258989  258990  258991  258993  258994  258995  258997  258999  259003  259005  259009  259011  259015  259021  259023  259029  259033  259035  259039  259045  259051  259053  259059  259063  259065  259071  259075  259081  259089  266669 

科目: 來源: 題型:

【題目】某校為調查高一、高二學生周日在家學習用時情況,隨機抽取了高一、高二各人,對他們的學習時間進行了統(tǒng)計,分別得到了高一學生學習時間(單位:小時)的頻數(shù)分布表和高二學生學習時間的頻率分布直方圖.

高一學生學習時間的頻數(shù)分布表(學習時間均在區(qū)間內):

學習時間

頻數(shù)

3

1

8

4

2

2

高二學生學習時間的頻率分布直方圖:

(1)求高二學生學習時間的頻率分布直方圖中的,并根據此頻率分布直方圖估計該校高二學生學習時間的中位數(shù);

(2)利用分層抽樣的方法,從高一學生學習時間在,的兩組里隨機抽取再從這人中隨機抽取,求學習時間在這一組中至少有人被抽中的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】某廠家舉行大型的促銷活動,經測算某產品當促銷費用為x萬元時,銷售量t萬件滿足t=5- (其中0 x a,a為正常數(shù)),現(xiàn)假定生產量與銷售量相等,已知生產該產品t萬件還需投入成本(10+2t)萬元(不含促銷費用),產品的銷售價格定為5+ 萬元/萬件.
(1)將該產品的利潤y萬元表示為促銷費用x萬元的函數(shù);
(2)促銷費用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

科目: 來源: 題型:

【題目】若函數(shù)的圖象的相鄰兩條對稱軸之間的距離為,則下列說法正確的是__________.(寫出所有正確結論的序號)

是偶函數(shù);

②函數(shù)的圖象關于點對稱;

③函數(shù)上單調遞增;

④將函數(shù)的圖象向右平移個單位長度,可得函數(shù)的圖象;

的對稱軸方程為.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知為定義在上的函數(shù),其圖象關于軸對稱,當時,有,且當時,,若函數(shù)恰有個不同的零點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】設公差大于0的等差數(shù)列{ }的前n項和為 .已知 ,且 , , 成等比數(shù)列.記數(shù)列 的前n項和為 .
(1)求 ;
(2)若對于任意的n ,k 恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】數(shù)列中,若對任意都有為常數(shù))成立,則稱為“等差比數(shù)列”,下面對“等差比數(shù)列” 的判斷:①不可能為;②等差數(shù)列一定是等差比數(shù)列; ③等比數(shù)列一定是等差比數(shù)列 ;④通項公式為(其中,且,)的數(shù)列一定是等差比數(shù)列,其中正確的判斷是( )

A. ①③④ B. ②③④ C. ①④ D. ①③

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)= .
(1)當a>0時,解關于x的不等式f(x)<0;
(2)若當a>0時,f(x)<0在x [1,2]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在△ABC中,內角A,B,C所對應的邊分別為a,b,c,且 .
(1)求角B的大;
(2)若b= ,求△ABC的面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知命題p:實數(shù)x滿足 ,其中 ;和命題q:實數(shù)x滿足 .
(1)若a=1且p∧q為真,求實數(shù)x的取值范圍;
(2)若-p是-q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】定義在R上的函數(shù)f(x)的圖象關于y軸對稱,且f(x)在[0,+∞)上單調遞減,若關于x的不等式f(2mx﹣lnx﹣3)≥2f(3)﹣f(﹣2mx+lnx+3)在x∈[1,3]上恒成立,則實數(shù)m的取值范圍為(
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]

查看答案和解析>>

同步練習冊答案