科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線與x軸交于不同的兩點A,B,曲線Γ與y軸交于點C.
(1)是否存在以AB為直徑的圓過點C?若存在,求出該圓的方程;若不存在,請說明理由;
(2)求證:過A,B,C三點的圓過定點,并求出該定點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x﹣4.設圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x﹣1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,過A作AF⊥SB,垂足為F,點E,G分別是棱SA,SC的中點.求證:
(1)平面EFG∥平面ABC;
(2)BC⊥SA.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| ﹣ |= ,求證: ⊥ ;
(2)設 =(0,1),若 + = ,求α,β的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)()在同一半周期內的圖象過點, , ,其中為坐標原點, 為函數(shù)圖象的最高點, 為函數(shù)的圖象與軸的正半軸的交點, 為等腰直角三角形.
(1)求的值;
(2)將繞原點按逆時針方向旋轉角,得到,若點恰好落在曲線()上(如圖所示),試判斷點是否也落在曲線()上,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩人各射擊一次,擊中目標的概率分別是和.假設兩人射擊是否擊中目標,相互之間沒有影響;每次射擊是否擊中目標,相互之間沒有影響.
(1)求甲射擊4次,至少1次未擊中目標的概率;
(2)求兩人各射擊4次,甲恰好擊中目標2次且乙恰好擊中目標3次的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】抽樣統(tǒng)計甲、乙兩位射擊運動員的5次訓練成績(單位:環(huán)),結果如下:
運動員 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
甲 | 87 | 91 | 90 | 89 | 93 |
乙 | 89 | 90 | 91 | 88 | 92 |
則成績較為穩(wěn)定(方差較。┑哪俏贿\動員成績的方差為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】一個工廠在某年連續(xù)10個月每月產品的總成本y(萬元)與該月產量x(萬件)之間有如下一組數(shù)據(jù):
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關系,請用相關系數(shù)加以說明;
(2)①建立月總成本y與月產量x之間的回歸方程;
②通過建立的y關于x的回歸方程,估計某月產量為1.98萬件時,此時產品的總成本為多少萬元?
(均精確到0.001)
附注:①參考數(shù)據(jù):,
,
②參考公式:相關系數(shù),
回歸方程中斜率和截距的最小二乘估計公式分別為:.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com