科目: 來源: 題型:
【題目】如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)求證:平面PBD⊥平面PAC;
(2)求二面角D﹣PB﹣C的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某高中為了推進新課程改革,滿足不同層次學(xué)生的需求,決定從高一年級開始,在每周的周一、周三、周五的課外活動期間同時開設(shè)數(shù)學(xué)、物理、化學(xué)、生物和信息技術(shù)輔導(dǎo)講座,每位有興趣的同學(xué)可以在期間的任何一天參加任何一門科目的輔導(dǎo)講座,也可以放棄任何一門科目的輔導(dǎo)講座.(規(guī)定:各科達到預(yù)先設(shè)定的人數(shù)時稱為滿座,否則稱為不滿座)統(tǒng)計數(shù)據(jù)表明,各學(xué)科講座各天的滿座的概率如下表:
信息技術(shù) | 生物 | 化學(xué) | 物理 | 數(shù)學(xué) | |
周一 | |||||
周三 | |||||
周五 |
根據(jù)上表:
(1)求數(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座的概率;
(2)設(shè)周三各輔導(dǎo)講座滿座的科目數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知bcosC=(2a﹣c)cosB. (Ⅰ)求B;
(Ⅱ)若c=2,b=3,求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點P(a,b)(ab≠0)是圓x2+y2=r2內(nèi)的一點,直線m是以P為中點的弦所在直線,直線l的方程為ax+by=r2 , 那么( )
A.m∥l,且l與圓相交
B.m⊥l,且l與圓相切
C.m∥l,且l與圓相離
D.m⊥l,且l與圓相離
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=|x|+|x﹣3|.
(1)解關(guān)于x的不等式f(x)﹣5≥x;
(2)設(shè)m,n∈{y|y=f(x)},試比較mn+4與2(m+n)的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在直角坐標(biāo)系中,曲線的C參數(shù)方程為 (φ為參數(shù)),現(xiàn)以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ= .
(1)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)在曲線C上是否存在一點P,使點P到直線l的距離最?若存在,求出距離的最小值及點P的直角坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)G(x)=xlnx+(1﹣x)ln(1﹣x).
(1)求G(x)的最小值:
(2)記G(x)的最小值為e,已知函數(shù)f(x)=2aex+1+ ﹣2(a+1)(a>0),若對于任意的x∈(0,+∞),恒有f(x)≥0成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C: 的短軸長為2 ,離心率e= ,
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若F1、F2分別是橢圓C的左、右焦點,過F2的直線l與橢圓C交于不同的兩點A、B,求△F1AB的內(nèi)切圓半徑的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在四棱錐中P﹣ABCD,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD,E、F,分別為PC、BD的中點.
(1)求證:EF∥平面PAD;
(2)在線段AB上是否存在點G,使得二面角C﹣PD﹣G的余弦值為 ,若存在,請求出點G的位置;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機抽取1人抽到喜歡游泳的學(xué)生的概率為 .
下面的臨界值表僅供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式: ,其中n=a+b+c+d)
(1)請將上述列聯(lián)表補充完整:并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(2)針對于問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡游泳的人中按分層抽樣的方法隨機抽取6人成立游泳科普知識宣傳組,并在這6人中任選2人作為宣傳組的組長,設(shè)這兩人中男生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com