相關(guān)習題
 0  263463  263471  263477  263481  263487  263489  263493  263499  263501  263507  263513  263517  263519  263523  263529  263531  263537  263541  263543  263547  263549  263553  263555  263557  263558  263559  263561  263562  263563  263565  263567  263571  263573  263577  263579  263583  263589  263591  263597  263601  263603  263607  263613  263619  263621  263627  263631  263633  263639  263643  263649  263657  266669 

科目: 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求曲線的普通方程和直線的直角坐標方程;

(2)射線的極坐標方程為,若射線與曲線的交點為,與直線的交點為,求線段的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若,試判斷的零點個數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】如下圖,在四棱錐中,,,,,,,的中點。

(1)求證:

(2)線段上是否存在一點,滿足?若存在,試求出二面角的余弦值;若不存在,說明理由。

查看答案和解析>>

科目: 來源: 題型:

【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,改款凈水器為三級過濾,每一級過濾都由核心部件濾芯來實現(xiàn).在使用過程中,一級濾芯需要不定期更換,其中每更換個一級濾芯就需要更換個二級濾芯,三級濾芯無需更換.其中一級濾芯每個元,二級濾芯每個元.記一臺凈水器在使用期內(nèi)需要更換的二級濾芯的個數(shù)構(gòu)成的集合為.如圖是根據(jù)臺該款凈水器在十年使用期內(nèi)更換的一級濾芯的個數(shù)制成的柱狀圖.

(1)結(jié)合圖,寫出集合;

(2)根據(jù)以上信息,求出一臺凈水器在使用期內(nèi)更換二級濾芯的費用大于元的概率(以臺凈水器更換二級濾芯的頻率代替臺凈水器更換二級濾芯發(fā)生的概率);

(3)若在購買凈水器的同時購買濾芯,則濾芯可享受折優(yōu)惠(使用過程中如需再購買無優(yōu)惠).假設(shè)上述臺凈水器在購機的同時,每臺均購買個一級濾芯、個二級濾芯作為備用濾芯(其中,),計算這臺凈水器在使用期內(nèi)購買濾芯所需總費用的平均數(shù).并以此作為決策依據(jù),如果客戶購買凈水器的同時購買備用濾芯的總數(shù)也為個,則其中一級濾芯和二級濾芯的個數(shù)應(yīng)分別是多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線與橢圓有一個相同的焦點,過點且與軸不垂直的直線與拋物線交于,兩點,關(guān)于軸的對稱點為.

(1)求拋物線的方程;

(2)試問直線是否過定點?若是,求出該定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,在等腰梯形中,,,點的中點.將沿折起,使點到達的位置,得到如圖所示的四棱錐,點為棱的中點.

(1)求證:平面;

(2)若平面平面,求三棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】我國南北朝時期的數(shù)學(xué)家祖暅提出了計算體積的祖暅原理:“冪勢既同,則積不容異!币馑际牵簝蓚等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體的體積相等.已知曲線,直線為曲線在點處的切線.如圖所示,陰影部分為曲線、直線以及軸所圍成的平面圖形,記該平面圖形繞軸旋轉(zhuǎn)一周所得的幾何體為.給出以下四個幾何體:

圖①是底面直徑和高均為的圓錐;

圖②是將底面直徑和高均為的圓柱挖掉一個與圓柱同底等高的倒置圓錐得到的幾何體;

圖③是底面邊長和高均為的正四棱錐;

圖④是將上底面直徑為,下底面直徑為,高為的圓臺挖掉一個底面直徑為,高為的倒置圓錐得到的幾何體.

根據(jù)祖暅原理,以上四個幾何體中與的體積相等的是( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】隨著我國經(jīng)濟實力的不斷提升,居民收人也在不斷增加。某家庭2018年全年的收入與2014年全年的收入相比增加了一倍,實現(xiàn)翻番.同時該家庭的消費結(jié)構(gòu)隨之也發(fā)生了變化,現(xiàn)統(tǒng)計了該家庭這兩年不同品類的消費額占全年總收入的比例,得到了如下折線圖:

則下列結(jié)論中正確的是( )

A. 該家庭2018年食品的消費額是2014年食品的消費額的一半

B. 該家庭2018年教育醫(yī)療的消費額與2014年教育醫(yī)療的消費額相當

C. 該家庭2018年休閑旅游的消費額是2014年休閑旅游的消費額的五倍

D. 該家庭2018年生活用品的消費額是2014年生活用品的消費額的兩倍

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,矩形中,為邊的中點,沿折起,點折至處(平面),若為線段的中點,則在折起過程中,下列說法錯誤的是(

A.始終有平面

B.不存在某個位置,使得

C.在某個球面上運動

D.一定存在某個位置,使得異面直線所成角為

查看答案和解析>>

科目: 來源: 題型:

【題目】下列命題錯誤的是( )

A. 命題“若,則”的逆否命題為“若 ,則

B. 為假命題,則均為假命題

C. 對于命題,使得,則,均有

D. ”是“”的充分不必要條件

查看答案和解析>>

同步練習冊答案