科目: 來(lái)源: 題型:
【題目】設(shè)直線(xiàn)l:y=2x﹣1與雙曲線(xiàn)(,)相交于A、B兩個(gè)不
同的點(diǎn),且(O為原點(diǎn)).
(1)判斷是否為定值,并說(shuō)明理由;
(2)當(dāng)雙曲線(xiàn)離心率時(shí),求雙曲線(xiàn)實(shí)軸長(zhǎng)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合,且長(zhǎng)度單位相同;曲線(xiàn) 的方程是,直線(xiàn)的參數(shù)方程為(為參數(shù),),設(shè), 直線(xiàn)與曲線(xiàn)交于 兩點(diǎn).
(1)當(dāng)時(shí),求的長(zhǎng)度;
(2)求的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)(,是自然對(duì)數(shù)的底數(shù))
(Ⅰ) 設(shè)(其中是的導(dǎo)數(shù)),求的極小值;
(Ⅱ) 若對(duì),都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為且橢圓上存在一點(diǎn),滿(mǎn)足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知分別是橢圓的左、右頂點(diǎn),過(guò)的直線(xiàn)交橢圓于兩點(diǎn),記直線(xiàn)的交點(diǎn)為,是否存在一條定直線(xiàn),使點(diǎn)恒在直線(xiàn)上?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知命題:函數(shù)在定義域上單調(diào)遞增;命題:在區(qū)間上恒成立.
(1)如果命題為真命題,求實(shí)數(shù)的值或取值范圍;
(2)命題“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知直線(xiàn)L: y=x+m與拋物線(xiàn)y2=8x交于A、B兩點(diǎn)(異于原點(diǎn)),
(1)若直線(xiàn)L過(guò)拋物線(xiàn)焦點(diǎn),求線(xiàn)段 |AB|的長(zhǎng)度;
(2)若OA⊥OB ,求m的值;
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】國(guó)家規(guī)定,疫苗在上市前必須經(jīng)過(guò)嚴(yán)格的檢測(cè),并通過(guò)臨床實(shí)驗(yàn)獲得相關(guān)數(shù)據(jù),以保證疫苗使用的安全和有效.某生物制品硏究所將某一型號(hào)疫苗用在動(dòng)物小白鼠身上進(jìn)行科研和臨床實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:
未感染病毒 | 感染病毒 | 總計(jì) | |
未注射疫苗 | 40 | ||
注射疫苗 | 60 | ||
總計(jì) | 100 | 100 | 200 |
現(xiàn)從未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率為.
(Ⅰ)求列聯(lián)表中的數(shù)據(jù),,,的值;
(Ⅱ)能否有把握認(rèn)為注射此種疫苗有效?
(Ⅲ)在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例抽取5只進(jìn)行病例分析,然后從這五只小白鼠中隨機(jī)抽取3只對(duì)注射疫苗情況進(jìn)行核實(shí),求至少抽到2只為未注射疫苗的小白鼠的概率.
附:,.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù),若對(duì)于區(qū)間上的任意,都有,則實(shí)數(shù)的最小值是( )
A. 20B. 18
C. 3D. 0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com