科目: 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,已知橢圓:(),,,,是橢圓上的四個動點,且,,線段與交于橢圓內(nèi)一點.當(dāng)點的坐標(biāo)為,且,分別為橢圓的上頂點和右頂點重合時,四邊形的面積為4.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)證明:當(dāng)點,,,在橢圓上運動時,()是定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形中(圖1),是的中點,, ,將(圖1)沿直線折起,使二面角為(如圖2).
圖1 圖2
(1)求證:平面;
(2)求異面直線與所成角的余弦值;
(3)求點到平面的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知多面體的直觀圖(圖1)和它的三視圖(圖2),
(1)在棱上是否存在點,使得平面?若存在,求的值,并證明你的結(jié)論;若不存在,說明理由;
(2)求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知為單位正方體,黑白兩只螞蟻從點出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”,白螞蟻爬行的路線是,黑螞蟻爬行的路線是,它們都遵循如下規(guī)則:所爬行的第段與第段所在直線必須是異面直線(其中是自然數(shù)),設(shè)黑、白螞蟻都走完2012段后各停止在正方體的某個頂點處,這時黑、白兩只螞蟻的距離是______________.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場周年慶,準(zhǔn)備提供一筆資金,對消費滿一定金額的顧客以參與活動的方式進行獎勵.顧客從一個裝有大小相同的2個紅球和4個黃球的袋中按指定規(guī)則取出2個球,根據(jù)取到的紅球數(shù)確定獎勵金額,具體金額設(shè)置如下表:
取到的紅球數(shù) | 0 | 1 | 2 |
獎勵(單位:元) | 5 | 10 | 50 |
現(xiàn)有兩種取球規(guī)則的方案:
方案一:一次性隨機取出2個球;
方案二:依次有放回取出2個球.
(Ⅰ)比較兩種方案下,一次抽獎獲得50元獎金概率的大。
(Ⅱ)為使得盡可能多的人參與活動,作為公司的負(fù)責(zé),你會選擇哪種方案?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),在上是增函數(shù),且,給出下列結(jié)論,
①若且,則;
②若且,則;
③若方程在內(nèi)恰有四個不同的實根, , , ,則或8;
④函數(shù)在內(nèi)至少有5個零點,至多有13個零點.
其中結(jié)論正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
已知在一個極坐標(biāo)系中點的極坐標(biāo)為.
(1)求出以為圓心,半徑長為2的圓的極坐標(biāo)方程(寫出解題過程)并畫出圖形.
(2)在直角坐標(biāo)系中,以圓所在極坐標(biāo)系的極點為原點,極軸為軸的正半軸建立直角坐標(biāo)系,點是圓上任意一點, , 是線段的中點,當(dāng)點在圓上運動時,求點的軌跡的普通方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為平行四邊形,,平面,,,,且是的中點.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的大;
(Ⅲ)在線段上是否存在一點,使得與所成的角為? 若存在,求出的長度;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com